

The Impact of Government Spending on the Distribution of Compensation and Business Surplus in Indonesia's Primary Sector

Ernawati

Universitas Halu Oleo, Indonesia

*Corresponding Author, Email: ernawaty@uho.ac.id

Abstract

This study aims to analyze the impact of government spending on the distribution of compensation and business surplus in Indonesia's primary sector. Data were analyzed using interregional Input-Output tables, descriptive statistics, and correlations. The data source was Statistics Indonesia. The results indicate a trade-off between business surplus and compensation. As business surplus increases, compensation decreases, and vice versa in several regions, except Bali & Nusa Tenggara. The correlation between business surplus and compensation is very strong for Kalimantan and Sulawesi, strong for Java, moderate for Sumatra, and very weak for Bali & Nusa Tenggara, as well as Maluku and Papua. Overall, the correlation coefficient between business surplus and labor compensation resulting from government spending is moderate in Indonesia.

Keywords: Business Surplus, Compensation, Government Spending.

INTRODUCTION

Government spending is an instrument for correcting market distortions. One such market distortion is the imbalance in bargaining power between workers and capital owners in the distribution of gross business value added. In industrial relations, workers are often considered to have low bargaining power vis-à-vis employers, resulting in wages that are lower than their productivity. Workers, as recipients of compensation, are considered to receive only a subsistence wage, while employers appropriate the surplus value produced by workers. Government spending is expected to achieve a more equitable redistribution of value added.

Research studies related to the redistribution of income between workers and capital owners are still limited in their examination of the impact of the minimum wage. These models do not address the impact of government spending flows on the distribution of compensation and business surplus. To examine the impact of government spending on the distribution of compensation and business surplus, an input-output model can be derived.

The Input-Output Table (IO Table) is a statistical matrix that presents information about goods and services transactions and the interrelationships between economic activity units within a region over a specific time period. Therefore, the IO Table is a quantitative model that shows a snapshot of a region's economic situation over a specific period (year). It illustrates the impact of final demand and its changes on various

production sector outputs, gross value added, import requirements, taxes, labor requirements, and other related factors. Meanwhile, the IRIO (Interregional Input-Output) table explains economic interactions between regions, economic potential, and collaboration, as well as opportunities for a region to address inequality by strengthening connectivity. It also illustrates the impact of final demand on welfare (gross value added), including compensation and business surplus.

Final demand consists of demand from consumer households (consumption), corporate households (investment), government households (government spending), and foreign households (exports and imports). Government households play a role in determining policy and distributing resources within the economy, including between workers and capital owners, to encourage inclusive growth. Inclusive growth through income redistribution is expected to foster the growth of the middle class, which was previously in a lower and marginalized position. Therefore, studies related to the impact of government policy (government spending) on income distribution still need to be examined.

Recent studies using an input-output approach to assess the impact of final demand include those conducted by Ernawati et al. (2023) and Zuhdi (2015) on the energy sector. Meanwhile, research examining the impact of final demand on gross value added has previously been conducted by Haris et al. (2018) and Bakinezos et al. (2020). However, these studies were

conducted at the national or provincial level and did not examine cross-regional studies in Indonesia. Furthermore, studies of the impact of final demand on gross value added did not distinguish between compensation value added and surplus value added. We consider separating the impact of government policies on two economic agents (workers and capital owners) to be urgent for inclusive growth in Indonesia. The novelty of this study lies in the trade-off between compensation and business surplus resulting from government spending, as analyzed using the IRIO approach. These findings are expected to contribute to further empirical studies examining why certain regions and sectors experience a greater impact on both compensation and business surplus as a result of increased government spending. The research's contribution to the government is to reallocate spending to sectors that result in more equitable and fair compensation increases.

METHODS

The study used the 2016 interregional Input-Output table (BPS Publication, 2021) based on producer prices from 52 industries. In the 52-industry table, the primary sector consists of 11 subsectors: Food Agriculture (I-01); Annual Horticultural Crops, Perennial Horticulture, and Others (I-02); Annual and Perennial Plantations (I-03); Livestock (I-04); Agricultural Services and Hunting (I-05); Forestry and Logging (I-06); Fisheries (I-07); Oil, Gas, and Geothermal Mining (I-08); Coal and Lignite Mining (I-09); Metal Ore Mining (I-10); and Other Mining and Quarrying (I-11). Data were analyzed using the I-O table and correlation. The I-O table is a tool for analyzing the interrelationships between economic sectors. The I-O table, using matrix notation, is formulated as follows:

$$AX + Y = X \quad (1)$$

$$X - AX = Y \quad (I - A)X = Y \quad (2)$$

$$X = (I - A)^{-1}Y \quad (3)$$

The $(I - A)$ matrix is known as the Leontief matrix. The inverse of this matrix, matrix $(I - A)^{-1}$ or B , is the inverse Leontief matrix. The impact of government spending on compensation and business surplus or gross value added (GVA) is calculated as:

$$V = \hat{V}X \quad (4)$$

Where \hat{V} is the diagonal matrix of gross value added (GVA) coefficients, and X is $(I - A)^{-1}F$. F is final demand, in this case, government spending. Determining the impact of government spending on labor compensation and business surplus:

$$\text{Share } GVA_{in} = GVA_{in}/GVA_i$$

$$\text{Share } BSg = BSg_{in}/BSg_i \quad (6)$$

$$\text{Share } LCg = LCg_{in}/LCg_i \quad (7)$$

Where:

GVA = gross value added as a result of government spending

BSg = value of business surplus as a result of government spending

LCg = value of compensation as a result of government spending

i = sector

n = region

The impact of Government Spending on business surplus is calculated by dividing the share of business surplus of sector i in region n by the share of GVA in that sector and region. The impact of Government Spending on compensation is calculated by dividing the share of LC of sector i in region n by the share of GVA in that sector and region. To determine whether there is a trade-off between the effects of government spending policy on workers and capital owners, a correlation analysis was conducted between LCg and BSg variables. based on the eleven primary industries. A negative correlation coefficient indicates a trade-off, and a positive correlation coefficient indicates no trade-off.

RESULTS AND DISCUSSION

Table 1 presents the input structure of 11 primary sectors in Indonesia. The primary sectors in Indonesia have a relatively low content of inputs from foreign imports, averaging 3.08 percent. The sector with the highest import content is I-11, at 5.75 percent. In general, mining-based sectors have a higher import content than agriculture and fisheries-based sectors. On the other hand, the sector with the highest proportion of domestic input is I-09. In general, the fisheries and

maritime-based sector has a higher proportion of compensation than the mining sector. The highest business surplus is in I-08, while the lowest is in I-04. Sector I-04 also has a relatively similar share of compensation and business surplus. Sectors I-04 and I-05 have a higher share of labor compensation

compared to the share of business surplus. Meanwhile, sectors with unequal shares of compensation to business surplus are I-09, followed by I-08 and I-10. Thus, it appears that the imbalance between business surplus and worker compensation is most pronounced in capital-intensive sectors.

Table 1. Input Structure of Indonesia's Primary Sector

Sector	Domestic Intermediate Inputs	Intermediate Inputs Foreign Imports	Labor Compensation	Gross Business Surplus	Taxes on Production Others
I-01	15.65	3.56	31.71	47.48	1.61
I-02	14.28	3.81	28.51	52.63	0.77
I-03	19.08	2.8	37.24	39.28	1.6
I-04	31.47	2.03	33.43	32.77	0.3
I-05	20.45	2.48	38.78	37.84	0.45
I-06	12.14	0.88	34.07	52.17	0.73
I-07	13.63	1.21	32.61	52.12	0.43
I-08	22.75	2.34	14.5	59.81	0.61
I-09	37.07	4.36	10.69	47.28	0.6
I-10	25.56	4.64	18.78	50.32	0.69
I-11	26.16	5.75	26.99	39.83	1.27
Max	37.07	5.75	38.78	59.81	1.61
Min	12.14	0.88	10.69	32.77	0.3
Mean	21.66	3.08	27.94	46.50	0.82

Source: Table I-O Indonesia 2016 (2021), processed

Table 2 presents the distribution or share of the impact of government spending by sector across six regions in Indonesia. Generally, Java experiences a greater impact from government spending distribution than other regions. The sectors with the largest distribution in Java are I-01, I-02, I-04, I-05, I-07, and

I-08. Meanwhile, Sumatra experiences the largest distribution of government spending impacts in sectors I-03, I-06, and I-011. In fact, Sumatra experiences 75 percent of the impact of government spending in sector I-06. Sector I-09 is predominantly benefited by Kalimantan, and sector I-10 by Maluku.

Table 2. Distribution (Share) of the Impact of Government Spending on Primary Sector Output Based on Region

Region	I-01	I-02	I-03	I-04	I-05	I-06	I-07	I-08	I-09	I-10	I-11
Sumatera	16.40	19.68	51.99	20.86	28.20	75.25	17.60	35.86	49.01	25.38	46.79
Java	50.98	57.96	12.82	46.44	35.46	9.42	23.46	38.87	0.18	4.15	35.16
Bali & Nusa											
Tenggara	8.76	8.96	2.01	9.45	7.16	0.26	7.51	0.02	0.00	2.62	1.44
Kalimantan	5.01	3.27	20.45	10.47	9.71	8.65	10.23	18.28	50.79	15.15	7.51
Sulawesi	16.42	8.12	10.51	9.97	15.17	4.14	23.02	2.59	0.02	17.22	7.61
Maluku & Papua	2.43	2.02	2.21	2.80	4.29	2.27	18.18	4.38	0.00	35.48	1.50

Source: Interregional Table I-O Indonesia 2016 (2021), processed

Although some islands experience relatively high government spending impacts compared to other regions, this is not in line with the compensation received by workers. Table 3 shows that Java experiences the largest distribution of government spending impacts across six primary sectors, but only

three sectors (i.e., sectors I-04, I-07, and I-08) show that the distribution of compensation received by workers as a result of government spending is higher than the distribution of increased output from the primary sector. In contrast, Bali and Nusa Tenggara experience a low distribution of government spending

but a relatively higher distribution of compensation impacts. Bali demonstrates that seven primary sectors have a higher distribution of compensation compared to output, resulting from government spending. Similarly, Sulawesi has five primary sectors with a higher distribution of compensation to output. The sectors with higher compensation distributions relative to output do not exhibit any particular pattern. However, sectors I-07 and I-09 are the only sectors with the lowest impact on output in terms of compensation: I-07 for Java and I-09 for Kalimantan.

Table 3. Distribution of the Impact of Government Spending on Compensation in the Primary Sector Based on Region

Region	I-01	I-02	I-03	I-04	I-05	I-06	I-07	I-08	I-09	I-10	I-11	Average
Sumatera	0.91	0.90	0.99	0.87	0.95	1.05	0.93	0.67	0.73	1.27	1.04	0.94
Java	0.99	0.99	0.95	1.23	0.91	0.90	1.38	1.41	0.89	1.43	1.00	1.10
Bali & Nusa Tenggara	1.13	1.05	0.87	0.70	1.24	1.04	0.80	1.5	0.00	1.32	1.03	1.07
Kalimantan	1.25	1.39	0.95	0.68	1.01	0.77	0.80	0.72	1.26	1.66	0.68	1.02
Sulawesi	1.00	1.13	1.23	0.77	1.15	0.99	0.93	0.79	0.50	0.96	1.08	0.96
Maluku & Papua	0.86	0.96	1.02	1.23	1.12	0.81	0.86	1.36	0.00	0.47	0.90	0.96
Average	1.02	1.07	1.00	0.91	1.06	0.93	0.95	1.08	0.85	1.19	0.96	

Source: Interregional Table I-O Indonesia 2016 (2021), processed

The impact of government spending on business surpluses is presented in Table 4. The impact of government spending on increasing business surpluses in Sumatra was higher for all sectors, except for sectors I-09 and I-10. On average, the regions with the highest impacts were Sumatra, Bali & Nusa Tenggara,

Table 3 shows that, by region, Java, Kalimantan, and Bali & Nusa Tenggara experience a higher increase in compensation distribution relative to output due to increased government spending, while the other four regions experienced lower distributions. However, by sector, seven sectors experienced higher compensation distributions in relation to their output. Sectors I-04, I-06, I-07, and I-09 were the sectors with lower compensation distributions relative to output.

Sulawesi, and Maluku & Papua. Meanwhile, Java and Kalimantan experienced a relatively low impact of government spending on business surpluses. Sectors with a high impact were sectors I-03, I-04, I-07, I-08, I-09, and I-11.

Table 4. Distribution of the Impact of Government Spending on Primary Sector Business Surpluses Based on Region

Region	I-01	I-02	I-03	I-04	I-05	I-06	I-07	I-08	I-09	I-10	I-11	Average
Sumatera	1.04	1.09	1.04	1.13	1.06	1.02	1.10	1.14	0.89	0.79	1.03	1.03
Java	1.01	1.00	1.02	0.77	1.06	0.90	0.83	0.86	1.32	0.81	0.94	0.96
Bali & Nusa Tenggara	0.91	0.98	1.09	1.30	0.80	0.92	1.00	1.35	0.00	0.98	1.00	1.03
Kalimantan	0.83	0.70	0.88	1.26	0.93	1.02	1.07	1.02	1.11	0.58	1.15	0.96
Sulawesi	0.99	0.94	0.95	1.27	0.86	0.87	1.12	1.05	1.61	1.02	0.92	1.06
Maluku & Papua	1.14	1.02	1.13	0.95	1.09	1.09	0.93	0.98	0.00	1.34	1.12	1.08
Average	0.99	0.95	1.02	1.11	0.97	0.97	1.01	1.07	1.23	0.92	1.03	

Source: Interregional Table I-O Indonesia 2016 (2021), processed.

Table 5 presents descriptive statistics and normality tests for the impact of government spending on both agent groups: business surpluses and workers in 11 primary subsectors. This indicates that the average business surplus is higher than the labor surplus for Sumatra, Sulawesi, and Maluku & Papua, while for other regions, labor compensation is higher

than the business surplus. The standard deviation values for each region indicate that the primary sector business surplus in Sumatra is more evenly distributed than in other regions; the same is true for compensation. The largest disparities in business surpluses were observed between sub-sectors in Bali and Nusa Tenggara, as were the disparities in

compensation. Greater disparities also occurred in Maluku and Papua, both in terms of business surpluses and labor compensation. Based on the Jarque-Bera probability, some business surplus data were not normally distributed, as indicated by probabilities <0.05. These data include business surpluses for Bali &

Nusa Tenggara, Sulawesi, and Maluku & Papua. Based on this consideration, the correlation between business surplus and labor compensation variables for these three regions was tested using Spearman's rank-order correlation. For Sumatra, Java, and Kalimantan, Pearson correlation was used.

Table 5. Descriptive Statistics on the Impact of Government Expenditure on Business Surplus (BU) and Labor Compensation (LC) in the Primary Sector in Indonesia

	Sumatra		Java		Bali & Nusa Tenggara		Kalimantan		Sulawesi		Maluku & Papua	
	BU	LC	BU	LC	BU	LC	BU	LC	BU	LC	BU	LC
Mean	1.030	0.937	0.956	1.098	0.939	0.971	0.959	1.015	1.055	0.957	0.981	0.872
Maximum	1.140	1.270	1.320	1.430	1.350	1.500	1.260	1.660	1.610	1.230	1.340	1.360
Minimum	0.790	0.670	0.770	0.890	0.000	0.000	0.580	0.680	0.860	0.500	0.000	0.000
Std. Dev.	0.104	0.161	0.154	0.218	0.351	0.396	0.201	0.331	0.219	0.208	0.342	0.372
Skewness	-1.258	0.282	1.066	0.617	-1.717	-1.222	-0.453	0.642	1.629	-0.844	-2.27	-1.112
Kurtosis	3.691	3.223	3.859	1.629	5.943	4.439	2.405	2.184	4.829	3.166	7.373	3.911
Jarque-Bera	3.120	0.168	2.420	1.560	9.372	3.699	0.538	1.061	6.396	1.319	18.21	2.648
Probability	0.210	0.919	0.298	0.458	0.009	0.157	0.764	0.588	0.041	0.517	0.000	0.266

Source: Interregional Table I-O Indonesia 2016 (2021), processed.

Table 6 presents the correlation between business surplus and labor compensation resulting from government spending. All regions except Bali & Nusa Tenggara have negative correlation coefficients. This indicates a trade-off between business surplus and compensation. When business surplus increases, compensation decreases, and vice versa. The estimation results show a very strong correlation in Kalimantan and Sulawesi, a strong correlation in Java, a moderate

correlation in Sumatra, and a very weak correlation in Bali & Nusa Tenggara, as well as Maluku and Papua. Overall, the correlation coefficient between business surplus and labor compensation resulting from government spending is moderate for Indonesia. Table 6 presents the probabilities for each region, where the correlation between business surplus and compensation is insignificant for Bali & Nusa Tenggara, as well as for Maluku and Papua.

Table 6. Correlation Test Results

Region	Correlation Coefficient	t- statistic	Prob.
Sumatra	-0.538	-1.914	0.088*
Java	-0.718	-3.092	0.013**
Bali dan Nusa Tenggara	0.014	0.041	0.968 ^a
Kalimantan	-0.829	-4.449	0.002***
Sulawesi	-0.827	-4.418	0.002 ^{a***}
Maluku dan Papua	-0.110	-0.331	0.748 ^a
Indonesia	-0.490	-4.499	0.000 ^{a***}

^aAn estimation using Spearman's rank-order

The results show that Java experiences a greater distributional impact of government spending than other regions, with a higher impact on average compensation than on business surplus, which is consistent with the islands of Kalimantan, Bali & Nusa Tenggara. Meanwhile, Sumatra, Sulawesi, Maluku & Papua exhibit the opposite pattern, with government

spending having a greater impact on business surplus than compensation. The estimation results show that the correlation between variations in business surplus and compensation resulting from government spending is very strong in Kalimantan and Sulawesi, strong for Java, moderate for Sumatra, and very weak for Bali & Nusa Tenggara, as well as Maluku & Papua. Overall,

the correlation coefficient between business surplus and labor compensation resulting from government spending is moderate. The research findings indicate a trade-off between business surplus and compensation. As business surplus increases, compensation decreases, and conversely, as compensation increases, business surplus must be sacrificed in all regions except Bali & Nusa Tenggara. This trade-off can be explained, among other things, from the perspective of Karl Marx. Marx asserted that in a capitalist society, the class structure is formed by the dominance of the bourgeoisie, which owns the means of production, while the proletariat class experiences exploitation in an unfair economic system. As capitalism develops, the bourgeoisie increasingly expands its control over markets and modern industry. This allows them to control the production, distribution, and prices of goods and services (Prayogi et al., 2025).

The conflict between wages and profits is at the heart of the capitalist system, occurring because the bourgeoisie (capital owners) seeks to maximize profits by paying the lowest possible wages, while the proletariat seeks the highest possible wages. This conflict arises from exploitation, where workers create surplus value from their labor but receive only a small portion as wages; the remainder becomes capitalist profit, creating class tension. The bourgeoisie is interested in maximizing profits to survive in a competitive environment, which means keeping workers' wages as low as possible. The proletariat is interested in securing the highest possible wages and better working conditions, which directly reduces capitalist profits. The results of the conflict are exploitation, where workers are continually exploited because they do not receive the full value of their labor, and alienation, where workers feel alienated from the products they produce because the profits are taken by capital owners rather than being shared with them.

Research findings indicate that the imbalance between business surplus and worker compensation is most pronounced in capital-intensive sectors. This implies that workers' bargaining power in capital-intensive sectors is lower. This could be due to the capital-intensive sector having a greater contribution (marginal product) of capital and technology compared to labor. Furthermore, capital-intensive sectors will thrive when wages are lower. Rising wages will reduce investors' incentives to invest. Mansur (2023) findings suggest that wage increases in Indonesia may deter FDI

from China. Low wage costs are a key determinant of FDI (Islam & Beloucif, 2024). Thus, increasing capital-intensive investment has a limited impact on wages but a direct impact on community welfare. Capital-intensive investments do not significantly impact poverty reduction (Amar & Arkum, 2023).

Capital-intensive investment has a complex impact on welfare: it is positive through increased economic growth, technology transfer, and infrastructure development, but can be negative/limited if it does not create significant jobs, causes income inequality, or only increases efficiency without promoting equality. In contrast, labor-intensive sectors, such as the agricultural sector, have a direct impact on welfare. The contribution of the agricultural sector has a positive and significant impact on the inclusiveness of growth, reducing inequality (Sholihah, 2014) and increasing welfare (Adha et al., 2024). Meanwhile, Zaini (2018) findings show that the mining sector (coal subsector) has a positive relationship with income inequality, where the higher the contribution of the coal subsector to the economy, the higher the income inequality in East Kalimantan Province. In terms of wages, the mining sector employs a greater number of outsourced workers, whose wages do not align with the specified sectoral wage but rather with agreements or contracts agreed upon between the company and the workforce (Fikri, 2018). This can have both positive and negative impacts on workers' wages. This impact is positive if wages are in line with productivity, and negative if wages are lower than productivity. This is because outsourced workers have low wage bargaining power over capital owners. The dilemma facing local workers is unemployment due to the abundance of human resources compared to job openings, while current demands include wages that do not match the work, and a low quality of the local workforce. Solutions to address these dilemmas include improving human resource quality, reducing cooperation with foreign countries, including foreign investors and foreign workers, creating jobs to reduce unemployment, aligning wages with work, improving the quality of education, and fostering a love of one's homeland and a love of domestic products (Djunaidi & Alfitri, 2022).

CONCLUSION

Java experiences a greater distributional impact of government spending than other regions. The sectors

with the largest distribution in Java are I-01, I-02, I-04, I-05, I-07, and I-08. Meanwhile, Sumatra experiences the largest distributional impact of government spending in sectors I-03, I-06, and I-011. In fact, Sumatra Island accounts for 75 percent of the government spending impact in sector I-06. Although some islands experience a relatively high impact of government spending compared to other regions, this is not in line with the compensation received by workers. Java experiences the largest distributional impact of government spending across six primary sectors; however, only three sectors (sectors I-04, I-07, and I-08) demonstrate that the distributional compensation received by workers as a result of government spending exceeds the distributional increase in output from the primary sector. In contrast, Bali & Nusa Tenggara experience a relatively low distributional impact of government spending but a higher distributional compensation impact.

The impact of government spending on increasing business surpluses in the Sumatra region is higher for all sectors, except for I-09 and I-10. On average, the regions with a high impact are Sumatra, Bali, Nusa Tenggara, Sulawesi, and Maluku & Papua. Meanwhile, the Java and Kalimantan regions experience a relatively low impact of government spending on business surpluses. The sectors with a high impact are I-03, I-04, I-07, I-08, I-09, and I-11. The correlation between business surpluses and compensation is categorized as very strong for the Kalimantan and Sulawesi regions, strong for the Java region, moderate for the Sumatra region, and very weak for the Bali & Nusa Tenggara regions, as well as Maluku & Papua. Overall, the correlation coefficient between business surpluses and labor compensation, as an impact of government spending, is categorized as moderate. There is a trade-off between business surpluses and compensation. When business surpluses increase, compensation decreases, and vice versa. If compensation increases, business surpluses decrease in several regions, except for Bali & Nusa Tenggara. The weakness of this study is that it does not account for indirect taxes and depreciation in business surplus data.

REFERENCES

Adha, N., Canon, S., & Akib, F. H. Y. (2024). Peran Sektor Pertanian, Pertambangan Dan Industri Pengolahan Terhadap Kesejahteraan Masyarakat Provinsi Sulawesi Tengah. *Jurnal Studi Ekonomi Dan Pembangunan*, 2(1).

Amar, H., & Arkum, D. (2023). Pengaruh Investasi terhadap Perekonomian, Pembangunan Manusia, Pengangguran dan Kemiskinan di Kabupaten Bangka. *Publikauma : Jurnal Administrasi Publik Universitas Medan Area*, 11(1).

Bakinezos, C., Panagiotou, S., & Vourvachaki, E. (2020). Multiplier effects by sector: an input-output analysis of the Greek economy. *Economic Bulletin*, 52.

Djunaidi, D., & Alfitri, A. (2022). Dilema industri padat modal dan tuntutan tenaga kerja lokal. *JPPI (Jurnal Penelitian Pendidikan Indonesia)*, 8(1).

Ernawati, E., Natsir, M., & Asri, M. (2023). The impact of final demand on energy sectors' interregional output. *Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah*, 11(5).

Fikri, C. R. (2018). Analisis Pengaruh Produk Domestik Bruto, Ekspor, Dan Upah Terhadap Penyerapan Tenaga Kerja Sektor Pertambangan Indonesia. *Jurnal Ilmiah*, 6(2).

Haris, W. A., Sarma, M., & Falatehan, A. F. (2018). Analisis Peranan Subsektor Tanaman Pangan terhadap Perekonomian Jawa Barat. *Journal of Regional and Rural Development Planning*, 1(3).

Islam, M. S., & Beloucif, A. (2024). Determinants of Foreign Direct Investment: A Systematic Review of the Empirical Studies. *Foreign Trade Review*, 59(2).

Mansur, A. (2023). Determinants of Foreign Direct Investment from China to Indonesia. *Research of Economics and Business*, 1(2).

Prayogi, A., Nasrullah, R., Setiawan, S., & Setyawan, M. A. (2025). Konsep Konflik dan Teori Konflik Sosial dalam Pemikiran Karl Marx. *JURNAL SINORA*, 1(1).

Sholihah, D. H. A. (2014). Pertumbuhan Inklusif: Faktor-Faktor yang Memengaruhi dan Dampaknya Terhadap Pertumbuhan Kelas Menengah di Indonesia. *Ekonomi Dan Kebijakan Pembangunan*.

Zaini, A. (2018). Pengaruh Kekayaan Sumberdaya Alam Batubara Terhadap Ketimpangan Pendapatan di Provinsi Kalimantan Timur. *Jurnal Borneo Administrator*, 13(2).

Zuhdi, U. (2015). An application of input-output analysis in analyzing the impacts of final demands changes on the total outputs of Japanese energy sectors: A further study. *Journal of Physics: Conference Series*, 622(1).