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ABSTRACT

HIV remains a major public health issue globally, particularly in poor resource
settings such as the Gutu district of Zimbabwe. The study aimed to develop a
predictive viral load outcome model for HIV children based on the CRISP-DM
research process. Secondary clinical data for children aged 0—17 years in Gutu were
retrieved from the Demographic Health Information System (DHIS2). The study
identified age, adherence status, gender, and geographical location as correlated
with viral load outcomes. A supervised machine learning logistic regression model
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was trained with data balance and proper management of complexities. Grid search-
based hyperparameter tuning was performed to improve model performance further.
The evaluation metrics were accuracy, sensitivity, F1 Score, and area under the
receiver operating characteristic curve (AUC-ROC). The model’s performance
resulted in 89% accuracy, with all the metrics showing a strong performance. A
confusion matrix was used to visualize the results. The findings add to the
knowledge on viral load outcome prediction and HIV care in Zimbabwe. The
findings suggest that early diagnosis and targeted interventions can improve viral
load outcomes in children in Gutu. For future research, the development of the
model will be based on more representative data sets and applied to other settings to
determine differences in other regions and understand the dynamics of HIV care in
children.

INTRODUCTION
Human Immunodeficiency Virus, or HIV,

continues to pose a major global health issue. This
is especially true for vulnerable children (Cornell et
al., 2019). Viral load (VL) is a primary indicator of
the virus’s presence. The ideal outcome for HIV-
positive children is target not detected, or TND
(Davies, 2020). Laboratories routinely monitor viral
load levels. Many countries work hard to optimize
these levels, particularly in areas with limited
resources. Machine learning approaches, like
logistic regression, show real promise in handling
the complexities of HIV data analysis (Shamount et
al., 2022).

Worldwide, about 78 percent of individuals on
antiretroviral therapy, or ART, reach viral
suppression. That is still short of the World Health
Organization’s 95 percent goal (Eamsakulrat et al.,
2022). Even in wealthier nations, suppression rates
for children fall below expectations. For example,
just 73 percent of Canadian children sustained
suppression over three years (Kakkar et al., 2020).
In China, rates varied between 60 and 78 percent
(Lao et al., 2023). South Africa saw 73 percent of
HIV-positive children achieving suppression
(Cornell et al., 2019). Sub-Saharan Africa shoulders
much of the burden. Suppression rates ranged from
40 to 77 percent across 12 countries (Hladik et al.,
2023). Zimbabwe managed 60 percent suppression,
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but children’s health outcomes warrant closer
attention (Hladik et al., 2023). ART has shifted HIV
from a deadly illness to a manageable chronic one
(Bouchard et al., 2022). However, the global
UNAIDS targets the final 95 percent for
suppression (Bouchard et al., 2022).

Sustaining viral suppression is essential for
successful HIV management. Current strategies
emphasize reaching undetectable levels (Bouchard
et al., 2022). Children encounter unique hurdles.
These include intricate medication schedules,
reliance on caregivers, economic obstacles, and co-
occurring infections. Such issues intensify in low-
areas like Gutu District. Spotting
detectable viral load early allows for prompt action.
With more clinical data now accessible, predictive
models become feasible. Logistic regression stands
out for predicting binary outcomes, such as health
risks, based on key factors (Nusinovichi et al.,
2020). This study develops a logistic regression
model from routine data on children in Gutu

resource

District. It identifies major predictors of viral load
results. Ultimately, it aims to inform better clinical
choices.

Despite advancements in HIV therapy,
children living with HIV in Zimbabwe’s Gutu
district continue to face poor viral load (VL)
outcomes, resulting in increased vulnerability to
opportunistic infections, compromised physical
development, and a higher risk of treatment failure
due to potential drug resistance (Machekano et al,
2023). With a previously suppressed viral load
outcome, a person’s viral load count is checked
after 1 year, which may be too late, especially in
cases of early viral rebounding. The general VL
suppression rate for people living with HIV in Gutu
is 83% which is way below the targeted 95% of the
UNAIDS’s targets (Conan et al, 2020). A study on
the rural part of the country showed VL suppression
rates of 80% for children (Machekano et al, 2023).

Due to socioeconomic circumstances, restricted
access to medical care as a result of long distances,
and poor antiretroviral therapy (ART) adherence,
many of these children are at risk of having a
detectable, and in worst cases, a high viral load
making them prone to weak bodies that can easily
be attacked by other diseases (Bouchard, et al,
2022). At the teen stages, some of these children
become sexually active, stop medication due to
stigma, and hence spread HIV if their viral load is
not controlled. Therefore, early detection of their
viral load outcomes is essential for prompt
treatment and intervention. Machine learning
presents a viable method to improve the predictive
accuracy of viral load outcomes. No localized
models are suited to the unique circumstances of
Gutu District’s vulnerable children. This research
aims to create a localised machine learning model
that can precisely forecast the results of viral loads
for Gutu children, enabling proactive actions for
areas with similar settings in Zimbabwe, hence
enhancing the Zimbabwean children population’s
health.

METHODS
The conceptual framework employed in this

study draws on established theories and empirical
evidence concerning health behaviors, with a
particular focus on HIV management through viral
load monitoring. It integrates key insights from the
Health Belief Model, Statistical Learning Theory,
and Social Detrimental Theory. In doing so, the
framework offers a thorough perspective on the
factors that shape viral load outcomes in vulnerable
populations. Evidence indicates that such an
approach can illuminate individual perceptions and
broader social influences. Figure 1 demonstrates
the interactions among these components and their
effects on health behaviors.
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Health Beliefs:
Perceived Susceptibility
Perceived Severity
Perceived Benefits
and Barriers

Social Influences:
e Social Support
e Peer Influence

Figure 1. Conceptual Framework

Perceived susceptibility to HIV-related health
risks among children appears to heighten motivation
for treatment adherence. This effect strengthens
when supportive peers and family are involved. On
the other hand, social stigma can undermine care-
seeking, even with strong positive intentions. These
dynamics shape the study’s methodology, from data
collection to analysis. The research focuses on
health beliefs, social and ecological influences, and
personal intentions. Ultimately, it seeks to pinpoint
intervention opportunities that enhance adherence in
vulnerable children.

Health Beliefs

Health beliefs play a very important role in

influencing an individual’s adherence to HIV

treatment, and they take into consideration
perceived  susceptibility, perceived severity,
perceived  benefits, and barriers. Perceived

susceptibility involves an individual’s assessment of
their own risk for contracting HIV or facing
elevated viral loads stemming from treatment non-
adherence. Evidence indicates that greater perceived
susceptibility tends to boost motivation for sticking
to prescribed regimens. Following that, perceived
severity centers on beliefs regarding the gravity of
life with HIV, along with the fallout from skipping
doses. Such understandings of potential health
repercussions shape behaviors promoting better
adherence. Finally, perceived benefits and barriers
come into play as people balance the upsides of
consistent treatment, like improved health
outcomes, against hurdles such as medication side

effects or logistical challenges in access.

Ecological Context:
e Access to Healthcare.
Environmental factors

DETECTABLE
VIRAL LOAD

Individual intentions: .
e Attitudes
e Subjective Norms

Consequently, interventions prove effective when
they amplify awareness of benefits while addressing
and reducing those barriers.
Social Influences

Social support plays a central role in this
framework. Family members, friends, and
healthcare providers help promote treatment
adherence. This, in turn, leads to suppressed viral
loads. Evidence indicates that robust social
networks motivate individuals to maintain their
regimens consistently. Additionally, peer influence
also contributes significantly. Positive relationships
with peers can strengthen healthy behaviors in
children and adolescents. Consequently, social
dynamics emerge as key factors in driving changes
in health behaviors.
Ecological Context

This component explores how broader social,
and cultural contexts shape health

Evidence indicates that factors like

economic,
behaviors.
socioeconomic status, community resources, and
cultural beliefs significantly influence individuals’
experiences in managing HIV. Access to healthcare
plays a pivotal role; i.e., the availability of services,
such as counseling and support groups, proves
essential for fostering adherence. This highlights the
need for systemic interventions aimed at improving
healthcare accessibility.

Consequently, environmental factors also
matter greatly, with different elements, including
caregiver support and household stability,
contributing crucially to adherence and achieving

undetectable viral loads in children. A child’s
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surroundings often carry stigma from neighboring
families. Empowering those families with accurate
knowledge about HIV can make managing the
condition far easier for affected children.
Individual Intentions
Attitudes:  Individual
treatment, shaped by beliefs and experiences, are
vital in determining adherence. Positive attitudes

attitudes  toward

toward medication and health can lead to better
adherence outcomes. Subjective Norms: The
perceptions of what others believe about HIV
treatment can influence an individual’s intentions to
adhere. Norms can either encourage or discourage
adherence to behaviours.

This chapter describes the research approach
for building a logistic regression model to predict
viral load outcomes among children with HIV in
Gutu District, Zimbabwe. Predictive analytics
served as the core method, emphasizing model
development, performance  evaluation, and
examination of demographic, health, and
socioeconomic factors. The approach drew from
existing literature on key determinants of viral load
suppression. The Cross Industry Standard Process
for Data Mining (CRISP-DM) framework was
applied to guide the data science effort, offering a
structured pathway for predictive modeling.
Research Philosophy

Research philosophies encompass theories
about the nature of the world being studied and how
knowledge about that reality is produced and
justified (Mauthner, 2020). Logistic regression
serves as a quantitative method for predicting
outcomes. It aligns closely with post-positivism, a

paradigm that prioritizes identifying and measuring
relationships among variables to explain and
forecast phenomena. In this study, the approach
addresses the complex factors shaping viral load
outcomes in children from Gutu District. Post-
positivism contributes to methodological rigor
through careful data collection and robust statistical
analysis, yielding reliable findings. By adopting this
philosophy, the employs
methods to forecast outcomes while navigating
inherent complexities. The focus remains on
enhancing children’s lives, fostering transparency,
and leveraging numerical data to uncover patterns,
trends, and relationships.

research statistical

Research Design
Cross Industry Standard Process for Data Mining
(CRISP-DM)

The researcher adopted the CRISP-DM
methodology as it was suitable for the study. The
Cross Industry Standard Process for Data Mining
(CRISP-DM) defines a process that provides a
framework for carrying out data mining projects
(Wirth & Hipp, 2000). The process model is being
developed by a consortium of leading data mining
users and suppliers, while partly sponsored by the
European Commission under the Early Stage
Program: Research-Innovation-Training (ESPRIT)
program (Project number 24959), mining projects
which are independent of both the industry sector
and the technology used (Wirth et al., 2000). The
CRISP-DM process model intends to make big data
mining projects less costly, more reliable,
controllable, and faster. Figure 2 shows the six
stages of the CRISP-DM methodology.
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Figure 2. CRISP-DM

Business Understanding

This is the first phase of the Cross-Industry
Standard Process for Data Mining (CRISP-DM)
architecture, known as Business Understanding.
The study has a research framework for developing
a predictive logistic regression model for children
with HIV in Gutu district. By 2030, the World
Health Organization (WHO) and the UN intend to
see a 95-95-95 target reached, where the last 95 of
viral suppression has been lagging over the years
(Bouchard et al., 2022). Determining the factors
associated with viral load outcomes might help
healthcare workers develop possible intervention

Business _,I Data
Understanding Understanding
Data
Preparation

Modeling

|

strategies that may increase viral suppression rates.
The study plan was to develop a logistic regression
machine learning model that accurately predicts
child viral load outcomes based on various
demographic, health, and socioeconomic factors.
The model will start by analysing the factors
associated with the viral load outcomes, then, based
on those factors, build a model that can predict VL
outcomes at any given time.
Data understanding

Figure 3 depicts the website from which the
data was downloaded.

Offine =

Signin

Figure 3. DHIS2 Login
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The relevant data was initially downloaded
from DHIS2 as a CSV file using the event reports
application. The data contained 646 records with
variables shown in the table below. The variables
are as downloaded from the system. Data was

Table 1. Data Set Variable Description

downloaded specifically for children between the
ages of 0-17 with a valid viral load result as of the
end of 2024. Table 1 shows different attributes that
are contained in the data downloaded above and are
shown with all their descriptions.

Attribute Description

Organ District where the child is monitored as an HIV positive patient.

Organisation The ward, within the district, where the child lives.

ovCID The OVC MIS generates a unique identifier for each child to identify children
enrolled in OVC PEPFAR-funded programs uniquely.

Has the beneficiary Data points that check whether the child is on ART, given that they are HIV

been linked to ART positive. (2™ 95 of the UN targets)

ART Number Another unique identifier generated by the Zimbabwe Ministry of Health and
Child Care (MOHCC) to uniquely identify HIV positive clients without
exposing their PII.

Sex Whether the child is male or female

Priority Population

The vulnerability status of that child made them eligible to be tracked and
monitored by PEPFAR-funded OVC programs.

HIV Status The child’s HIV status, which a health facility confirms.

Date of birth The date when the child was born

Age The age of the child as of 31/12/2024

Health facility The health center is where the child receives ART medication, ART adherence
support, and viral load monitoring.

Date of ART When the child was initiated on ART, as informed by the health facility.

Initiation

ART duration For how long the child has been on ART since the time of initiation to the end of
2024.

ART status Classification of the child’s adherence, whether it is good or poor, based on

Zimbabwe health SOPs.

Adherence Status

Classification of the child’s adherence, whether good or poor, is based on
Zimbabwe health SOPs.

ZW-Viral load result

The child’s actual, valid viral load result as informed by the health facility and
confirmed by any Zimbabwe medical laboratory.

VL Status

The status of the viral load result, whether it is still detectable or not detectable.

The data was loaded into Python for analysis.
The data was explored using Jupyter Notebook to

understand it. Figures 4 and 5 depict snippets of the
explanatory data analysis the researcher carried out.
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import pandas as pd

try:

df = pd.read_csv('gutu2vlreport311224.csv')
display(df.head())
print(df.shape)
except FileNotFoundError:
print("Error: "gutu2vireport311224.csv' not found, Please ensure the file exists in the current directory.”)

df = None # Assign None to df in case of error

except Exception as e:
print(f"An unexpected error occurred: {e}")

df =

None

Figure 4. Loading the data set code

Has

' o ART
. beneficiary Priority Health Date of .
Organ Orgarllsauon ovcip been  ARTNumber  Sex population HIV Datgof Age  Facility for ART duration A
unit name } Status Birth I as@ stati
linked to 1 ART initiation 2024
ART?

Chidrens .

0 Guu Guuward2! NAPEWOT1117m0 g OBO4ZRN02- - adolescents oo yupor 7 10087 18202 2|
A00012 living with T
Mission
HIV H
Clinic
Chidrens e

1 Gutu Gutuward17 AREM160516mO g OBOSOANT- )y adolescents oo e 165016 8 100215- 201212017 7
A-00381 living with Rural
HIV Hospital
Children/ -
08-04-0B-2011 adolescents -

2 Guu Guuward19  AIRE11030710 g P romale 2005 pogiive 11132007 17 100215- 22302011 1B
A-00143 living with Rural
b Hospital
Children/ Gutu -

08-04-28-2012- adolescents " Magombedze "

3 Guu Guuward2?  AIKAW28050810 1 oz Female e Posiive 2052008 16 ") 19015 9 Aci
HIV Clinic
Chidren/ .

4 OGuu Guuward3 NEHEW2SOHD g OBUIBANE o AdOlSCENS o om0t 13 100215- 26142018 6 I
A-00022 living with Rural
il Hospital

(646, 17)

Figure 5. Loading the data set code
Figures 6 and 7 present the code used to visualize the data in the CSV file.
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# 4. Correlation Analysis (for numerical features)

numerical features = df.select dtypes(include=['number'])

correlation matrix = numerical features.corr()
plt.figure(figsize=(10, 8))

sns.heatmap(correlation matrix, annot=True, cmap="coolwarm")
plt.title('Correlation Matrix of Numerical Features')

plt.show()

#5. Relationship with Target variable
for col in df.columns:

if df[col].dtype == 'object' and col != 'VL status':

plt.figure(figsize=(10,6))

df.groupby(col)[ 'vL status'].value counts().unstack().plot(kind="bar"', stacked=True)

plt.title(f'vL status by {col}")
plt.shou()

elif df[col].dtype in ['inte4', 'floate4'] and col != 'vL status':

plt.figure(figsize=(10,6))
df.boxplot(column=col, by="vL status")
plt.title(f'vL status by {col}")
plt.shou()

Figure 7.Visualizing the data set code

import matplotlib.pyplot as plt
import seaborn as sns

# 1. Data Overview
display(df.info())
display(df.describe())

# 2. Missing Values
missing values = df.isnull().sum()

print("Missing values:\n", missing values)

# 3. Target variable Analysis

vl status counts = df['VvL status'].value counts()
print("vL Status Counts:\n", vl status counts)

plt.figure(figsize=(8, 6))

vl status counts.plot(kind="bar")
plt.title('Distribution of VL Status')
plt.xlabel('vL status')
plt.ylabel('Frequency")

plt.show()

Figure 8. Visualizing the data set code

Figure 7 shows the code snippets that are used
for visualizing the data to see basic statistics, which
include the minimum and maximum values for each
attribute, the means, the standard deviations from
the means, the data types in each attribute, and the
number of records in each attribute. Each attribute
was also checked for any missing values.
Relationships between each variable and the target
variable (Viral load status) were explored and
visualised wusing different suitable visuals to
understand the data further. Figure 8 depicts the
code snippet for displaying the data’s rows and
columns.

# 6. Data Shape
print(df.shape)
Figure 9. Displaying the number of rows and
columns
Figure 8 shows the stages that are involved in
visualizing the data to see basic statistics, which
include the minimum and maximum values for each
attribute, the means, the standard deviations from
the means, the data types in each attribute, and the
number of records in each attribute. Each attribute
also checked for

was any missing values.

Relationships between each variable and the target
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variable (Viral load status) were explored and
visualised using different suitable visuals to further
understand the data.

Data quality is a very important aspect when
dealing with data, as it can have social and
economic impacts (Wang et al., 2020). The
researcher, therefore, also ensured that the data used
was of high quality. For this particular study, the
data used were secondary data extracted from an
information system. There were prior data quality
measures that were put in place during the
collection and entry of the data. These measures
ensured that the data met the data quality

# Convert 'Age' to numeric, handling errors

dimensions that include completeness, consistency,
and reliability.
Data Preparation

At this stage, data was prepared to a state
where it was suitable for model building and
development. The researcher carried out data
wrangling using Jupyter Notebook to develop the
final data set for model development. Below are
snippets of the data munging steps that were taken:
Figure 9 shows the first step in data preparation,

which is data cleaning.

df["Age'] = pd.to_numeric(df['Age'], errors='coerce")

# Check for and handle inconsistencies in sex column
df['Sex'] = df['Sex'].str.lower() # Convert to lowercase for consistency

# Handling inconsistencies in 'VL status’ (if any)

df['vL status'] = df['vL status'].str.strip()

# Checking data types and inconsistencies after cleaning

display(df.info())
display(df.describe(include="all"))

Figure 10. Data Cleaning Code
A prior data verification and cleaning was
conducted before the actual wrangling of data.
import matplotlib.pyplot as plt

# Pie chart for 'VL status’ distribution
plt.figure(figsize=(6, 6))

Figure 10 presents the result of the data cleaning
above.

df["vL status'].value_counts().plot.pie(autopct="%1.11%%", startangle=9@)

plt.title('Distribution of VL Status')
plt.ylabel("")
plt.show()

# Visualizations for categorical variables
categorical cols = ['Organ’,
for col in categorical cols:

plt.figure(figsize=(10, 6))

'Oorganisation unit name', 'Sex’, 'Priority population 1', 'Art status’,

'Adherence status’]

df.groupby(col)['vL status’].value_counts().unstack().plot(kind="bar", stacked=True)

plt.title(f'vL status by {col}")
plt.xlabel(col)
plt.ylabel('Frequency')
plt.xticks(rotation=45, ha='right")
plt.tight_layout()

plt.show()

# Visualizations for numerical variables

numerical cols = ['Age’', 'ART duration as @ 2@24', 'ZW- Viral load results']

for col in numerical_cols:
plt.figure(figsize=(8, 6))
df.boxplot(column=col, by="VvL status’)
plt.title(f'vL Status by {col}")
plt.suptitle('') # Removing the default suptitle
plt.show()

Figure 11. Data visualization after cleaning

Data was also visualized to appreciate the
noticeable trends and factors associated with viral
load outcomes before model building. Figures 11

and 12 show the next step in data preparation,
which is Feature Engineering.
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| import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler

# Identifying categorical columns (excluding the target variable)
categorical cols = ['Organ’, 'Organisation unit name', 'Sex', 'Priority population 1', 'Art status', 'Adherence status']

# Creating dummy variables

df_encoded = pd.get_dummies(df, columns=categorical cols, drop first=True)

# Analyzing and transforming continuous features

# Log transformation for 'ZW- Viral load results' if it has a skewed distribution
# Checking for zero values first, add 1 before log if any zeros exist

if (df _encoded['Zw- viral load results'] == @).any():

df_encoded|[ 'log_viral load'] = np.loglp(df encoded['ZW- Viral load results'])

else:

df _encoded|[ 'log_viral load'] = np.log(df encoded[ 'ZW- viral load results'])

# 2. Standardization for 'Age’ and 'ART duration as @ 2624
scaler = StandardScaler()

# Fitting the scaler on the entire dataset

df_encoded[['Age", 'ART duration as @ 2024']] = scaler.fit transform(df encoded[[ 'Age', 'ART duration as @ 2024']])

# Droping original columns after log transformation and standardization
df_encoded = df encoded.drop(['ZW- Viral load results'], axis = 1)

display(df_encoded.head())
Figure 12. Feature Engineering

Adherence
Art Art Art .
Sex_male status IIT status LTFU status MA status_Poor log_viral_loac
- - - adherence
True True False False True 0.00000(
True True False False True 0.00000(¢
False True False False True 3.43398
False False False False False 3.43398
Figure 13. Feature Engineering
In this stage, the researcher conducted feature ~ Modelling

engineering to improve model accuracy on unseen
data. This was done by creating dummy variables
for categorical variables and carrying out log
transforms, standardization, and scaling for the
appropriate continuous variables. After this stage,
the data was ready for model development.

The right machine learning model was a
crucial choice in creating a viral load prediction
model. The study employed a logistic regression
supervised machine learning model because the
study’s outcome variable was binary. Logistic
regression is one of the best models, specifically
designed to model the relationship between a set of
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independent variables and a binary dependent
variable (Solutions, 2020). Data was split into

from sklearn.model selection import train test split

# Defining features (X) and target (y)
X = df_encoded.drop('VL status’, axis=1)
y = df_encoded['VL status']

# Splitting data into training and testing sets
X_train, X test, y train,

Figure 14. Data splitting code

The following code was used to develop and
train the logistic regression model using the training
data set.

training and testing sets as shown below. Figure 13
now shows how the data was split accordingly.

test = train_test split(X, y, test size=0.2, random state=42, stratify=y)

X_train = X_train.drop(['Date of Birth', 'Date of ART initiation®, 'Health Facility for ART'], axis=1)
X_test = X test.drop(['Date of Birth', 'Date of ART initiation', 'Health Facility for ART'], axis=1)

In [14]: M from sklearn.linear_model import LogisticRegression
# Drop 'Date of Birth', 'Date of ART initiation’, and 'Health Facility for ART' columns
# Initialize and train the model
logreg = LogisticRegression(random_state=42, solver='liblinear', max_iter=1000)
logreg.fit(X_train, y train)
Out[14]: (ogisticRegression(max_iter=108@, random state=42, solver='liblinear')

Figure 15. Logistic Regression model code

Initially, the model could not be trained due to
columns that contained string values, which led to
dropping those columns before the actual model
training. The regression model from sklearn.
linear model was initialised with  specific
parameters. The “random_state” parameter is used
to control the random number generator, which
shuffles the data. This parameter was set to 42,
ensuring that the results from the model are
reproducible. The “solver” parameter specifies the
algorithm to be used for optimisation. It was set to
bilinear because it was the most suitable due to the
size of the data set, which was small to medium.

The “max_iter” parameter indicates how many
iterations the optimization process must run to
converge. In this case, it was set to a maximum of
1000 training iterations.
Evaluation

A crucial step after the modelling phase in the
CRISP-DM (Cross-Industry Standard Process for
Data Mining) methodology is the evaluation phase,
where the model’s performance across training runs
is evaluated, which helps to see how it is
performing. The testing data set was used for this
stage. The following evaluation matrices were
employed to evaluate the model:

Accuracy — this metric measures the extent to
which the model makes correct predictions, i.e.,

Accuracy = Number of correct predictions/Total

number of predictions. A high accuracy reflects the
model’s ability to predict most classes well.

Precision = True positives/(True positives +
False positives). High precision is an indication of
minimised false positives, thus good model
performance.

Recall — this metric focuses on the model’s
ability to identify all the actual positive instances.
Recall = True positives/(True positives + False
negatives). A high recall minimises false negatives,
thus resulting in good model performance.

F1 Score — this metric is a metric that ranges
from 0 — 1, which is a combination of precision and
recall, balancing the minimisation of false positives
and false negatives. F1 Score = 2*[(Precision *
Recall)/(Precision + Recall)]. A higher Fl-score
indicates a better balance between precision and
recall.

AUC-ROC  (Area

Operating Characteristic Curve) — this metric

under the Receiver
evaluates the model’s ability to distinguish between
positive and negative classes.

The higher the AUC, the better the model does
at distinguishing. If the AUC is 0.5, the model is as
good as random guessing. Confusion matrix — a
table that the performance of a
classification model. It shows the counts of true

visualises

positives (top left), true negatives (bottom right),
false positives (top right), and false negatives
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(bottom left). The metric provides a clearer picture Figure 15 are snippets of the code the
of the mistakes the model is making. researcher employed to evaluate the developed
model on the testing data set.

# Calculating evaluation metrices
try:
accuracy = accuracy score(y test, y pred)
precision = precision score(y test, y pred, average='weighted', zero division=0)
recall = recall score(y test, y pred, average='weighted', zero division=0)
f1 = f1 score(y test, y pred, average='weighted', zero division=0)

# Calculating AUC-ROC
y_prob = logreg.predict proba(X test)[:, 1] # Probability of the positive class
auc_roc = roc_auc_score(y_test, y prob)

print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.af}")
print(f"Fl-score: {f1:.4f}")
print(f"AUC-ROC: {auc roc:.af}")

except valueError as e:
print(f"Error calculating metrics: {e}")

# Printing of the classification report
print(“\nClassification Report:\n", classification_report(y_test, y pred, zero division=8))

# Generating and visualizing confusion matrix
cm = confusion matrix(y test, y pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
xticklabels=logreg.classes_, yticklabels=logreg.classes )
plt.xlabel("Predicted™)
plt.ylabel(“Actual™)
plt.title("Confusion Matrix")
plt.show()
Figure 16. Model Evaluation Code

The outcomes of the evaluation process were performance were made by hyperparameter tuning
assessed to see if the model was performing well.  using the GridSearchCV, as shown in Figure 16.
After reviewing, attempts to optimize the model

from sklearn.model selection import GridSearchcv
from sklearn.metrics import make_scorer, f1_score
from sklearn.preprocessing import LabelEncoder

# Convert the target variable to numerical Llabels
le = LabelEncoder()
y_train_encoded = le.fit_transform(y_train)

# Defining the parameter grid
param_grid = {
'c': [e.01, 0.1, 1, 10, 100],
‘penalty’: ['11°, '12'],
‘solver’: ['liblinear’]

}

# Defining the scoring metric (using f1 weighted)
scoring = {'f1 weighted': make scorer(fl score, average="weighted')}

# Initializing GridSearchcv
grid search = Gridsearchcv(estimator=logreg, param grid=param grid, scoring=scoring, refit='f1 weighted', cv=5)

# Fitting GridSearchcV to the training data
grid search.fit(X train, y train encoded)

# pPrinting the best hyperparameters and score
print("Best Hyperparameters:", grid search.best params )
print("Best Fl-weighted Score:", grid search.best score )

# Getting the best estimator
best logreg = grid search.best estimator

Figure 17. Model Optimization code
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The results of this model evaluation were
adopted by the researcher, taking note of all
limitations to the models’ performance.

Ethical Considerations

Ethical considerations were highly important
in this research since it involved sensitive medical
data for a vulnerable population, which is children
living with HIV. The researcher considered the
confidentiality principle by seeking approval to use
the data to carry out the research. The researcher
also downloaded patient-level data, excluding
personal identifiable information (PII), to maintain
data privacy. The researcher also acknowledged the
prior work of other researchers, adhering to the
university’s criteria. The researcher analysed the
data with integrity, avoiding biases and errors as
these could promote that would
potentially negatively impact the Zimbabwe Health
Sector. A steadfast commitment to ethical
considerations was maintained. To project the
identity of the individuals, pseudonyms, i.e., P1, P2,

outcomes

<class ‘pandas.core.frame.DataFrame”’ >
RangeIndex: 646 entries, © to 645
Data columns (total 17 columns):

# Column

organ

Organisation unit name

ovC ID

Has beneficiary been linked to ART?
ART Number

Sex

Priority population 1

HIV Status

Date of Birth

YHUNOVAWNEO

11 Date of ART initiation
12 ART duration as @ 2024
12 Art status
14 Adherence status
15 ZW- viral load results
16 VL status
dtypes: int64(4), object(13)
memory usage: 85.9+ KB
None
Figure 18. Data structure result
The results from Figure 16 show that the data
set, which was being analysed, had 646 records with
17 attributes. The 17 attributes consisted of 4
integer data types and 13 objects. This was an
immediate indication that data wrangling would be
conducted to have data that could be used for

modelling.

P3, P4, and P5, were used in such a way to maintain
anonymity.

RESULTS AND DISCUSSION

This chapter presents, analyses, and discusses
the results of the study on a viral load prediction
model for children living with HIV in Gutu district.
Different visuals were used to present the results of
the data analysis. The 5 stages of the machine
learning pipeline were followed in the presentation
and analysis of the data results. These stages
data pre-processing,

include data exploration,

modelling, model evaluation, and model
optimisation. The researcher used Python to analyse
the data.
Data Exploration results

Explanatory data analysis results
properties of the data, trends within the data, and
possible factors associated with viral load status.
Results from the explanatory data analysis that was
carried out are discussed. Figure 17 shows the

summary of the data contained in our file.

showed

Mon-Mull Count Dtype

646 non-null object
646 non-null object
646 non-null object
646 non-null intea

646 non-null object
646 non-null object
646 non-null object
646 non-null object
646 non-null object
646 non-null intea

646 non-null object
646 non-null intea

646 non-null object
646 non-null object
646 non-null intea

646 non-null object

Figure 18 outlines the descriptive statistics for
the dataset. It summarizes essential measures across
the variables examined, including the mean,
median, standard deviation, and range. These
figures provide a clear snapshot of the data’s central
tendencies and variability.
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Has beneficiary been linked to ART?

Age ART duration as @ 2024 ZW- Viral load results

ART duration as @ 2024

646.000000 646.000000
8.578947 215.973684
3.492955 449.032035
0.000000 0.000000
6.000000 0.000000
9.000000 0.000000

11.000000 66.500000
17.000000 6750.000000

ZW- Viral load results

count 646.0 646.000000
mean 1.0 12.815789
std 0.0 3.434679
min 1.0 1.000000
25% 1.0  11.000000
50% 1.0 13.000000
75% 1.0 16.000000
max 1.0 17.000000
Has beneficiary been linked to ART? Age

count 646.0 646.000000
mean 1.0 12.815789
std 0.0 3.434679
min 1.0 1.000000
25% 1.0  11.000000
50% 1.0 13.000000
75% 1.0 16.000000
max 1.0  17.000000

Figure 19. descriptive statistics result

Descriptive data analysis was conducted to
initially understand the data. The results in Figure
17 showed that the minimum age of the children in
the data set was 1 and the maximum age was 17.
This was in line with the research, which focused on
children living with HIV who are below 18 years of
age. This analysis also showed a maximum viral
load result of 6780 and a minimum of 0, which was
a strong indication that the data had both classes
represented in the target variable since a logistic
regression model was to be built.

Figure 19 highlights the distribution of missing
values, highlighting variables with incomplete data.

646.000000 646.000000
B8.578947 215973684
3.492955 449.032035
0.000000 0.000000
6.000000 0.000000
9.000000 0.000000

11.000000 66.500000
17.000000 6780.000000

Missing values:
organ 4]
Organisation unit name

ovC 1D

Has beneficiary been linked to ART?
ART Number

Sex

Priority population 1

HIV Status

Date of Birth

Age

Health Facility for ART

Date of ART initiation

ART duration as @ 2024

Art status

Adherence status

ZW- viral load results

VL status

Figure 20. Count of missing values result

Figure 19 shows that the data had no missing
values; thus, there was no need to employ
techniques that replace missing values. This also
meant that the study’s results were going to give a
true reflection of what is in the Gutu district, with
no mathematical bias that comes with dealing with

20 0000 00000000

missing values.

Figure 20 illustrates the distribution of the
target variable, VL status, essential for assessing the
prevalence of detectable versus non-detectable viral
loads in the study population.

290



Indonesian Journal of Innovation and Applied Sciences (IJIAS), 5 (3), 277-304

Distribution of VL Status

TND

Figure 21. Distribution of VL status result

Figure 20 shows the distribution of the target
variable, VL status. The visual showed a big
number of children (49.1%) having a detectable
viral load result, which is in line with the gap in the
literature of most HIV positive people having a
detectable viral load result. This result showed that
the VL results were not biased more toward one
class, which could affect model development,

Detected

resulting in overfitting. This strongly indicated that
a good model was to be developed from the dataset.

Figure 21 illustrates the distribution of viral
load status across various organizational units,
offering valuable insights into variations in viral
load outcomes at different service delivery points,
thus pinpointing areas that might need extra support
Or resources.

VL status by Organisation unit name

VL status
I Detected
40 s TND
30
20 A
10
0_
I N 00 S L S P 00 O K 0N 1S UMD M 60 O S 1 0N 1) S L0 W P 00 G € 1 0 091 S L A P 60 O S
[ Lo o Lon T Lom Do Lo Do Lop Lop o Ko Lo B P R Eap o T N T N e T e N D N D Wcn Taca N Mua T Taa T T Ts Taa B b ol
e E e EEEECECCECCEECCCSEEEEEEgEEEEEE
G (T (D (00 (G (0 (G0 (5 A0 (0 (0 0 (0 10 (D 10 (0 10 (0 (0 (0 (0 0 (0 (0 (0 10 10 (0 (0 0 (0 10 0 0 03 000
EEEEEE S E S E S E S S EEEEEEEEEEEEEEEEEEEEEEEEEEEE
s e s s o s s s s s s s s o s s s s s s s s e s o s s s s s s s s s s s e s s s s |
B il e e e ey e s iy e s e e e iy e s e s e s e e e s s s e s i e T e e e e e e —
o R s s - - s s s s s s s s e s s s s s B s s s - s s B s e s s s g s s s s s - s
[GIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGI GG GG GGl GG GIG]
Oraanisation unit name

Figure 22. VL status by org unit result

Figure 20 shows that the largest number of
children living with HIV lived in ward 8, and the
least were from wards 4, 39, and 40. These results
were a guide for targeted intervention strategies, as
interventions may need to start with the high-
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volume areas within the district. Figure 22
illustrates the distribution of viral load (VL) status
across various health facilities, offering valuable
insights into variations in VL outcomes between
facilities.
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VL status by Health Facility for ART

VL status
80 s Detected
s TND

60

20 A

Gutu - Tirizi - 101689 - Clinic
Gutu - Zinhata - 101809 - Clinic

GUt - Chepiri - 100160 - Clinic
Gutu - Zvavahera - 101824 - Clinic

Gutu - Cheshuro - 100161 - Clinic

Gutu - Chimombe - 100215 - Rural Hospital
u - Chinyika - 100243 - Rural Health Centre
1-Chitando - 100287 - Rural Health Centre
utu - Chitsa - 100301 - Rural Health Centre

Gutu - Mazura - 100985 - Clinic

Gutu - Mukaro - 101083 - Mission Clinic
Gutu - Mukaro Mission Hospital

- Munyikwa - 101114 - Rural Health Centre
Gutu - Nyazvidzi - 101382 - Clinic

Gutu - Mutema - 101172 - Clinic
Gutu - Serima - 101542 - Mission Hospital

Gutu - Dambara - 100360 - Clinic

Gutu - Denhere - 100380 - Clinic

Gutu - Devure - 100387 - Mission Clinic
Gutu - Mataruse - 100945 - Clinic

Gutu - Matizha - 100954 - Clinic

Gutu - Mushaviri - 101144 - Clinic

Gutu - Mutero - 101175 - Mission Clinic

Gutu - Chiwore - 100325 - Clinic
Gutu - Mutero Rural Health Centre

Gutu - Gutu Rural - 100558 - Clinic
Gutu - Magombedze - 100822 - Clinic
Gutu - Nemashakwe - 101224 - Clinic

Gutu - Soti Source - 101615 - Clinic

Magombedze Chitsa Rural Health Centre
Majarada - 100833 - Rural Health Centre

Gutu - Gutu - 100557 - Mission Hospital

Figure 23. VL status by the health facili_ty results
Results from Figure 19 also show that the the ideal viral load that the world is looking forward
largest number of children living with HIV is  to for the HIV community. Researchers may have to
reported at Gutu Rural Hospital. P1 and P2 also had  conduct further research and qualitative studies to
large numbers of children living with HIV. These understand the factors associated with such good
high-volume sites also had higher numbers of viral load for these facilities for adoption by other
children with a detected viral load. Intervention facilities within the Gutu district.
strategies were to prioritise these health facilities. Figure 23 shows how viral load status across
Of note were P3, P4, and P5, whose children sex is distributed, illustrating valuable insights into
all had a TND viral load result as of 2024. This is  gender-based variations in viral load outcomes.

VL status by Sex VL status by Sex
175
300 4
150
250
125
200 -
100
150 - -
100 50
50 4 VL status 25 WL status
mm Detected mm Detected
. TND B TND
0‘ |:| -
] » z ]
[
£ - £ g
£ Ed
Sex Sen

Figure 24. VL status by sex result
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Figure 23 generally suggests that the viral load
status of children in Gutu district may be slightly
affected by the child’s gender. The results show that
the children with a detected viral load are more
likely to be females than males, though the variance
is small. Males generally seemed to be doing better
in terms of viral load detection, where more males
have a “target not detected” status, hence
diminishing the chances of spreading HIV to 0%.

VL status by Adherence status

VL status
I Detected
B TND

400

200

100

Poor adherence

o
2
o
°
S
a
|
-]

Adherence status |

Figure 25. VL status by ART status result

The results suggested that adherence to ART
was a strong factor that affected viral load. There
were more children with a detected viral load in the
class of those who had poor adherence to ART.
Children who were active on ART had fewer
detected viral load results than children who were
interrupted in treatment, lost to follow-up up and
those who had missed their appointments. This

Figure 24 illustrates the distribution of viral
load (VL) status according to adherence to
antiretroviral therapy (ART). This visualization
offers valuable insights into how adherence
influences VL outcomes. It also highlights potential
intervention points to enhance overall treatment

success.
VL status by Art status
WL status
350 B Detected
== TND
300
250
200
150
100
50
ﬂ T
[T [= o]
4
Art status

meant that viral load outcomes were to be improved
by improving ART adherence.

Figure 25 shows the distribution of viral load
status across different age groups in children. This
visualization reveals variations in outcomes, which
could guide the development of targeted
interventions and clinical approaches tailored to
specific ages.

293



Indonesian Journal of Innovation and Applied Sciences (IJIAS), 5 (3), 277-304

Boxplot grouped by VL status
VL Status by Age

6. T T
14 1
12
10
8 -
6 -
4 - . —_—
[0} [o]
21 lo}
[o]
T T
Detected TND
VL status

Figure 26. VL status by age result

Figure 25 shows the median age of individuals
with “Detected” viral load to be around age 14,
slightly higher than the median age of those with
“Target Not Detected,” around age 13. For
“Detected,” the box extends roughly from age 11 to
age 16. This means the middle 50% of individuals
with detectable viral load fall within this age range,
while for “TND,” the box extends roughly from age
10 to age 16. This means the middle 50% of
individuals with target-not-detected viral load fall
within this age range. The results suggest a trend

towards slightly older individuals having a
detectable viral load compared to younger
individuals. The older children will be at a

Interpretation of Coefficients:
- log_viral load:

transition stage from being a child to becoming an
adult. This is the point where they are highly
affected by stigma and discrimination, hence
affecting their adherence, resulting in detectable
viral load. From the results, age was a factor that
was slightly associated with children’s viral load
outcomes.

Figure 26 presents an interpretation of the log
odds. This approach sheds light on how shifts in the
explanatory variables affect the likelihood of the
outcome under study. Studies show that such
help clarify
probabilistic models.

analyses these relationships in

An increase in 'log_viral_load' is associated with a decreased log-odds of 'VL status' being ‘Detected’.

- Has beneficiary been linked to ART?:

An increase in 'Has beneficiary been linked to ART?" is associated with an increased log-odds of VL status' being 'Detec

ted’.
- Adherence status_Poor adherence:

An increase in 'Adherence status Poor adherence’ is associated with an increased log-odds of "VL status’ being 'Detecte

d'.
- Sex_male:

An increase in 'Sex_male' is associated with an increased log-odds of 'VL status' being 'Detected’.

Art status_IIT:

An increase in 'Art status_IIT' is associated with an increased log-odds of 'VL status' being 'Detected’.

- Organisation unit name_Gutu ward 23:

An increase in 'Organisation unit name_Gutu ward 23° is associated with an increased log-odds of 'VL status’

ted’.
- Art status_LTFU:

being 'Detec

An increase in 'Art status_LTFU® is associated with an increased log-odds of 'VL status’ being 'Detected’.

- Organisation unit name_Gutu ward 38:

An increase in 'Organisation unit name_Gutu ward 3@°
ted’.
- Organisation unit name_Gutu ward 21:

An increase in 'Organisation unit name_Gutu ward 21°
ted’.
- Organisation unit name_Gutu ward 18:

An increase in 'Organisation unit name_Gutu ward 18°
ted'.

Figure 27. Log Odds interpretation result

is associated with an increased log-odds of "VL status’

is associated with an increased log-odds of 'VL status”®

is associated with an increased log-odds of 'VL status’

being ‘Detec

being 'Detec

being 'Detec
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Results in Figure 26 shows the log odds
coefficient results, which test an event’s likelihood.
The results showed that Children with poor
adherence to their medication have a higher chance
of the virus being detected. They also revealed that
being male is associated with a higher chance of the
virus being detected. Biological, social, or
behavioral factors related to being male might
influence viral load outcomes in this population.
The results also showed that children who have
experienced an “Interruption in Treatment” and
those who were “Lost to follow-up” (stopped
attending clinics or receiving treatment) also have a

higher chance of the virus being detected. Stopping
and restarting ART can lead to viral rebound, and
viral load is likely to increase and become
detectable. The results also suggested that there
might be differences in healthcare delivery, access
to resources, patient populations, or other factors
across different wards in Gutu that influence viral
load outcomes. These findings could highlight areas
needing targeted interventions.

Figure 27 shows results from the chi-squared
test analysis that was conducted to interrogate
further factors associated with a detectable viral
load.

Feature Chi2 Statistic  P-value Cramers V
0 Organ 0.000000 1.000000 NaN
1 Qrganisation unit name 40.350325 0454768 0.249924
2 Sex 1.214041 0270533  0.043351
3 Priority population 1 0.000000 1.000000 NaN
4 HIV Status 0.000000 1.000000 NaN
5 Art status 11301411 0.010203 0132267
] Adherence status 5.628593 0017670  0.093343

Figure 28. Chi-Squared test result

The results suggested that ART status and
adherence status statistically significant
factors associated with viral load status since they
had small p-values (0.05), which meant rejecting

Wwere

the null hypothesis and concluding that they affect
viral load status. However, other statistical analyses
conducted above revealed other factors associated
with VL status.
Data Pre-Processing

The data had no missing values and showed
consistency from the EDA; thus, no data cleaning
was done. A Python code was run to handle missing

data and inconsistencies, if any, to ensure the model
is being developed using reliable data. Data was
then pre-processed in preparation for modelling.
Results from this stage are discussed below.

Figure 28 displays the pre-processed data. This
cleaned version of the dataset offers a clear
perspective, helping to accuracy and
reliability for subsequent statistical analysis and

ensurc

predictive modeling.
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# Identifying categorical columns (excluding the target variable)
'Priority population 1°, "Art status', 'Adherence status']

categorical_cols = ['Organ’, ‘Organisation unit name', "Sex",

# Creating dummy variables

df_encoded = pd.get _dummies(df, columns=categorical_cols, drop_first=True)

# Analyzing and transforming continuous features

# Log transformation for 'ZW- Viral Lload results’ if it has a skewed distribution
# Checking for zero values first, add 1 before Log if any zeros exist

if (df_encoded['ZW- Viral load results'] == @).any():

df_encoded[ 'log viral_load'] = np.loglp(df_encoded['ZW- Viral load results'])

else:

df_encoded[ 'log_viral_load'] = np.log(df_encoded['ZW- Viral load results'])

# 2. Standardization for 'Age’ and 'ART duration as @ 2824°
scaler = StandardScaler()

# Fitting the scaler on the entire daotaset
df_encoded[["Age’,

"ART duration as @ 2824°]] = scaler.fit_transform(df_encoded[[ 'Age’, 'ART duration as @ 2824°']])

# Droping original columns after log transformation and standardization

df_encoded = df_encoded.drop(['ZW- Viral load results'], axis = 1)
display(df_encoded.head())
ART 0 isation O ion O n 0 isation
Health Date of N - - - -
HIV Date of - duration VL unit unit unit unit
ART Number Status Birth Age Fa(ultt);t:_; initia?ig-r[l as @ status ** name_Gutu name_Gutu name_Gutu name_Gutu Sex_ma
2024 ward 38 ward 39 ward 40 ward 41
Gutu -
Devure -
O s FPosiive 1112017 -1694568  100387- 132022 -1834950  TND False False False False Tn
Mission
Clinic
Gutu -
Chimombe -
!_05—%:_02{?31;{ Positive 16/5/2016 -1.403194 100215- 20122017 -0.452388 TND .. False False False False n
Rural
Hospital

Figure 29. Data after pre-processing

As a mathematical model, logistic regression
cannot process attributes with non-mathematical
data. Some attributes had to be transformed to suit a
mathematical state that the model can process. The
first section of Figure 27 shows the section where
the researcher performed one-hot encoding for
categorical variables. The table below, in Figure 27,
shows the results after one-hot encoding, where
variables created. Continuous

dummy were

# Drop 'Date of Birth’,

variables such as age and ART duration were also
analysed, transformed, and standardized
accordingly to achieve the best performing model.
As shown in Figure 29, additional data
cleaning steps addressed lingering inconsistencies,
outliers, and missing wvalues. This preparation
ensured the dataset was ready for reliable analysis.

'Date of ART initiation’, and 'Health Facility for ART' columns

X_train = X_train.drop(['Date of Birth', 'Date of ART initiation’, "Health Facility for ART'], axis=1)

X_test = X test.drop(['Date of Birth’,

Figure 30. Further Data Cleaning

It shows the dropping of columns that
contained string values, which could negatively
affect the building of the logistic regression model.
Modelling

This is the stage where the model was
developed and trained. The data was first split into

"Date of ART initiation’,

"Health Facility for ART'], axis=1)

the training and testing sets. Figure 30 shows the
splitting of the data into the training and testing data
sets as the first step in data modeling.
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I from sklearn.model_selection import train_test_split

# Separate features (X) and target variable (y)

= df_selected features.drop('VL status’,
y = df _selected features['VL status’]

# Split data into training and testing sets
X _train, X test, y train, y test =

# Display shapes of the resulting datasets (optional,

print("X_train shape:", X_train.shape)
print{"X_test shape:", X_test.shape)
print{"y_train shape:", y_train.shape)
print("y test shape:", y test.shape)

¥_train shape:
X_test shape:
y_train shape:
y _test shape:

(516, 8)
(13@, 8)
(516,)

(13@,)

Figure 31. Data splitting result

The results show that the final data set used to
develop the actual model contained eight columns.
The training data set had 516 rows and eight
attributes, while the testing set had 130 rows and

# Initialize and train the model

logreg = LogisticRegression(random state=42, solver='liblinear’

logreg.fit(X_train, y_train)

axis=1)

train_test split(X, y, test size=8.2, random state=42)

for verification)

eight attributes. Figure 31 shows the development
and training of the logistic regression model using
the training data set with 1000 training runs.

, Mmax_iter=1008)

. LogisticRegression(max_iter=1008, random state=42, solver='liblinear’)

Flgure 32. Model training result

At this stage, the model was developed and
ready to be tested for performance.
Model Evaluation

Accuracy: 8.3923
Precision: @.9112
Recall: ©.8923
Fl-score: 8.8989
AUC-ROC: 8.8956

Classification Report:

This is the stage where selected evaluation
matrices were used to evaluate the model. The
results of the evaluation are shown in Figure 32.

precision recall f1l-score  support
Detected 1.88 a.78 g.88 64
THND g.82 1.a08 8.9a8 il
accuracy 8.89 136
macro avg g.91 8.89 g8.89 138
weighted avg @.91 8.89 8.89 138

Figure 33. Model evaluation result

Accuracy - The model’s accuracy was 0.8923
(89.23%), which means that the model correctly
predicted the viral load status (Detected or TND)
for approximately 89.23% of the samples in the test
data set.

Precision — The model’s precision was 0.9112
(91.12%). This result suggests that when the model
predicted a certain viral load status, it was correct
about 91.12% of the time.

Recall — Recall was at 0.8923(89.23%), which
indicated that the model could identify 89.23% of
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all the actual instances of each viral load status in
the test data set.

Fl-score — The F1 score was 0.8909, which
suggested a good balance between precision and
recall.

The high accuracy, precision, recall, good F1
score, and AUC-ROC suggested that the model was
performing well and is a strong predictor of viral
load for children living with HIV in the Gutu
district of Zimbabwe. The model could be adopted
for further improvement and prediction of viral load
outcomes for children living with HIV in Gutu.

Confusion Matrix

Actual
Detected

TND

I
Detected TND

Predicted
Figure 34. Confusion matrix

The model wrongly classified only 14 records
out of the 130. The 50 children detected VL were
all predicted as having a detected result. 66 children
who actually had their target not detected were
predicted to have a TND result.

However, from the analysis and literature, the
researcher felt that a better model would have been
developed if the data had more attributes.
Information such as WHO stage, Drug regimen,

orphan status, caregiver type, distanddJ€oRalthIt was 0.8956, w

facility, etc., may have helped build a robust model.
The researcher recommends capturing this data in
the system, especially if it has already been
collected on hard copies.

Figure 33 shows a visual of the model’s
performance in the classification of the children
within the testing set of 130 records.

-0

Model Optimisation

The researcher conducted feature engineering
in an attempt to improve the model’s performance.
Results of the model are shown in Figure 34:
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Best Hyperparameters: {'C': 8.81,
Best Fl-weighted Score: 8.9277254179244666

Optimized Model Evaluation:
Accuracy: 8.8923

Precision: @.9112

Recall: ©.8923

Fl-score: 6.3989

AUC-ROC: ©.9822

Classification Report (Optimized Model):

precision recall fl-score
a 1.88 8.78 6.38
1 8.82 1.8 B8.98
accuracy B8.89
macro avg g.91 8.89 8.89
weighted avg 8.91 8.89 g.89

Figure 35. Optimised model results

Results from Figure 33 indicated that the
optimized model had an improved F1 score and
AUC-ROC, which suggested that the optimized
model had better performance, though the model’s
accuracy was the same.
Adherence to Treatment

Treatment adherence plays a vital role in HIV
management, particularly for children, where
consistent antiretroviral therapy (ART) can lower
viral loads and bolster immune function (Bouchard
et al, 2022). Nevertheless, adherence faces obstacles
like intricate medication schedules, adverse effects,
psychological barriers, and limited awareness of
treatment’s value among children and caregivers
(Conan et al, 2020; Goga, 2021; Fuyana et al.,
2025). Educational programs that clarify ART’s
advantages enhance comprehension and adherence,
leading to improved viral suppression (Slogrove et
al, 2021). Emotional factors, including stress,
often undermine

anxiety, and depression,

caregivers’  capacity to oversee treatment
(Bhattacharya et al, 2023). Conversely, social
support from family and peers bolsters adherence
efforts (Gachago et al, 2022). Engaging family in
educational initiatives helps children grasp the
treatment’s purpose, yielding better overall health
results (Mavhu et al, 2020).
Stigma and Discrimination

HIV stigma stands as a significant obstacle to
accessing medical care and maintaining treatment
adherence (Mahamboro et al, 2022). Evidence

indicates that it frequently leads to feelings of

"penalty’:

‘12", 'solver': 'liblinear'}

support

64
66

138
138
138

shame and social isolation among those affected
and their families (Gachago et al, 2022). This
stigma appears in various forms, including public
stigma, self-stigma, and institutional stigma, all of
which influence perceptions and hinder access to
care (Brahmbhatt, 2020). For children living with
HIV, the consequences can be particularly severe,
often involving bullying, emotional distress, and
difficulties in disclosing their status, which in turn
compromise overall health outcomes (Mebrahtu et
al., 2023). Awareness campaigns, especially those
led by community leaders, have shown promise in
dispelling myths, alleviating fears, and promoting
more inclusive attitudes toward individuals with
HIV (Mahamboro et al, 2021).
Socioeconomic Status

Socioeconomic status significantly influences
health behaviours and outcomes, particularly for
vulnerable populations like children living with
HIV. Individuals from
backgrounds are believed to frequently face
healthcare challenges (Kojima et al, 2021). Among
these difficulties are limited access to appropriate

lower socioeconomic

transportation, limited educational possibilities, and
(Gachago et 2022).
Children from low-income families may experience

financial limitations. al,
higher stress levels and instability affecting their
health and well-being (Gachago et al., 2022).
Financial limitations can lead to food insecurity,
poor housing, and limited access to healthcare
services, hindering effective treatment of chronic

conditions like HIV (Goga et al, 2021).
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Studies
socioeconomic backgrounds often struggle to get
medical care on time as they face issues like living
far from clinics and not having reliable

indicate that people from lower

transportation, leading to delays in diagnosis and
treatment (Slogrove, 2020). Efforts to fix this, such
as setting up mobile clinics, help bridge the gaps,
ensuring that vulnerable populations receive the
care they need regardless of their socioeconomic
status (Mavhu et al, 2020).

In some cases, it may be an issue of limited
access to quality education where the education
system does not have enough resources to support
the education of children in that area, thus limiting
individuals’ understanding of health information
and reducing their ability to navigate the healthcare
system effectively (Okonji et al, 2021). Educational
interventions that empower families to make
informed health decisions can be instrumental in
improving health behavior.

Cultural Beliefs

Cultural beliefs significantly shape health
behaviors and perceptions, affecting how
individuals understand and respond to conditions
such as HIV (Bhattacharya et al, 2023). In many
African contexts, traditional healing practices
remain widespread. However, evidence indicates
that these practices can sometimes interfere with
adherence to prescribed medical therapies (Nichols,
2021). Interestingly, certain families favor these
beliefs conventional medical
interventions, resulting in inconsistent treatment

cultural over

patterns.  Integrating traditional and modern

approaches enhances overall acceptance and
compliance with care (Mukumbang et al, 2021).
Cultural  perspectives  also  contribute
substantially to HIV-related stigma. Often, the
disease is associated with moral shortcomings,
which fosters discrimination, reluctance to disclose
status, and even virological failure (Poku et al.,
2020). Education and awareness initiatives prove
essential in mitigating this stigma. In collectivist
societies, family dynamics exert a strong influence
on health choices. Studies show that engaging
families in educational efforts and treatment
processes bolsters adherence and fosters a more
supportive environment (Cluver et al., 2020).
Peer Influence
Peer pressure

is key in shaping health

behaviors among children and adolescents in low-

resource areas, such as Gutu. Evidence indicates it
significantly influences these behaviors
(Bhattacharya et al., 2023). Social ties often guide
decisions, including adherence to HIV treatment, as
young people tend to mirror their peers’ actions
(Mebrahtu et al., 2023).

Positive influences from peers can boost
commitment to health routines. Studies show this
might lead to better outcomes (Mavhu et al., 2020).
Programs offering peer support and mentorship
appear to strengthen adherence and support
reaching undetectable viral loads (Mahamboro et
al., 2022).

On the other hand, negative pressures like
bullying or discrimination could hinder access to
care. Research suggests these factors discourage
engagement (Pantelic et al., 2022). Fostering safe
environments for dialogue and encouraging
inclusive attitudes among peers may help counter
such effects. Understanding peer dynamics remains
crucial. It allows for interventions that build

adherence,
and enhance

supportive  relationships,
achieve undetectable viral loads,
overall health for children with HIV.
Empirical Review

Children and adolescents living with HIV
(CALHIV) consistently experience sub-optimal

improve

viral load outcomes compared to adults (Davies,
2020). They face challenges such as disclosure of
HIV status, navigating adherence during major life
changes (e.g., school transitions, adolescence), and
experiencing stigma and discrimination, which
negatively affect their retention in care and
achieving and sustaining an undetectable viral load
(VL) (Bouchard et al.,, 2022). Research has
generally shown that managing HIV in children
presents discrete challenges compared to adults
(Cluver et al.,, 2020). Developmental stages,
treatment adherence, and psychosocial
environments often affect children more than adults
(Bhattacharya et al., 2023). The World Health
Organisation says viral load testing is essential for
monitoring ART effectiveness and identifying viral
suppression success or failure (World Health
Organisation, 2021). Achieving the UNAIDS 95-
95-95 targets requires 95% of individuals on ART
to reach viral suppression, where currently, only
about 59% of PLHIV worldwide have achieved
viral suppression, with children and adolescents
lagging the most (World Health Organisation,
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2021). Research has highlighted that although ART
availability has increased, viral load suppression
rates remain low among children, especially in rural
settings (Machekano et al., 2023).

ART adherence
outcomes (Kim et al., 2022). Many children face

is crucial to viral load

difficulties such as complex regimens, medication
side effects, and lack of caregiver support, all of
which can affect adherence (Nichols, 2021). Stigma
related to HIV can discourage families from seeking
or continuing treatment (Mahamboro et al., 2022).
A child’s health can be significantly affected by the
emotional effects of living with HIV. Children may
experience mental health issues such as anxiety,
depression, loneliness,  affecting  their
willingness to adhere to treatment (Brahmbhatt,
2020). Family dynamics, especially the presence of
supportive caregivers, are crucial in influencing
children’s health behaviours and outcomes (Cluver
et al., 2020). Taking note of these psychosocial
dynamics is of great significance, i.e., it comes up
with interventions that meet medical needs and
support the emotional well-being of the children.
Current developments in machine learning

and

have led to the management of chronic diseases
such as HIV. Several research studies have shown
that machine learning can handle larger volumes of
data in such a way as to discover trends and
predictions, which is very significant for effective
public health intervention (Nash, 2022). Machine
learning has emerged as a more effective approach
that offers innovative methods to predict patient
2020). Different
models, such as decision trees, random forests, and
networks, have been implemented to
evaluate healthcare data, leading to actionable
insights (Mukura et al., 2023; Ndlovu et al., 2025).
They have proven to help healthcare practitioners in
decision-making by discovering hidden patterns and
correlations often unseen through traditional

outcomes (Shamount et al,

neural

statistical techniques (Shamount et al., 2020).
Machine learning has been used in HIV care to
predict outcomes such as medication adherence,
viral load suppression, and disease progression
(Almuhaideb et al., 2021; Chiramba et al., 2024).
Evidence has shown that ML models can also
analyse patient data to predict which individuals
may need medical monitoring or are at risk of
treatment failure (Almuhaideb et al., 2021). This

predictive capability is particularly valuable,
especially in resource-limited settings.

Machine learning applications in healthcare
offer substantial potential to reduce errors and
enhance operational efficiency, as evidenced by
recent analyses (Almuhaideb et al., 2021). For
instance, predictive models incorporating socio-
demographic and behavioral data have shown
promise in managing HIV (Makota et al., 2023).
Yet, research on treatment outcomes remains
limited in Zimbabwe, especially regarding viral
suppression in children. Most existing studies
prioritize adults (Machekano et al., 2023; Slogrove,
2020). This oversight is particularly troubling,
considering the distinct barriers children face, such
as adherence to antiretroviral therapy and associated
stigma. Consequently, there is an urgent need for
localized machine learning models that account for
context-specific factors influencing viral load in
pediatric populations. Tailored algorithms prove
more effective when aligned with regional
healthcare dynamics (Almuhaideb et al., 2021).
Although the literature underscores machine
learning’s role in HIV management, significant
gaps
forecasting treatment results. Drawing on the
example of HIV-infected children in Gutu District,

persist in its practical deployment for

this study seeks to deliver actionable insights for
refining predictive models in healthcare.
Gaps in the Literature

Although machine learning has advanced HIV
research, significant gaps remain, particularly in
localized studies focused on vulnerable populations
(Slogrove, 2020). Evidence indicates that most
models draw from adult datasets and generalized
populations, which diminishes their relevance for
children in rural settings like Gutu District
(Slogrove, 2020). Zimbabwe’s socioeconomic and
cultural context plays a major role in shaping health
outcomes (Machekano et al., 2023). However,
existing studies frequently overlook these elements,
thereby restricting the practical applicability of their
models. Current research also analyzes clinical,
demographic, and psychosocial variables in
isolation rather than integrating them (Kakkar et al.,
2020). Developing contextualised machine learning
models in low-resource environments such as Gutu
is crucial, as these can capture the distinct
challenges faced by children living with HIV. Such
models appear well-suited to detect viral load
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failure early, facilitate targeted interventions, and
support proactive, real-time monitoring. Ultimately,
this early detection can disease
progression, the importance of
contextualized approaches in enhancing HIV
management and health informatics.

improve
underscoring

CONCLUSION

In conclusion, age, ART status,

geographic location, and adherence are features that

sex,

influence viral load outcomes for children between
the ages of 0 — 17 who are living with HIV in the
Gutu district of Zimbabwe. Machine learning can be
used to predict child viral load outcomes. Logistic
regression, a supervised machine learning, can
accurately predict these outcomes with high
accuracy rates as high as 89%. The logistic
regression model developed in this study has a high
performance and can be adopted, improved, and
integrated into the Zimbabwe health care system if
there are enough resources. This will imply earlier
identification of risk of a detectable viral load for
children, hence prior migratory measures, which
will result in an overall high VL suppression rate
with VL targets not being detected upon blood
testing, thus HIV epidemic control.
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