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Genetic diversity helps to survive forest trees in several environmental changes and 
disease conditions. Different forest management activities such as harvesting, 
thinning, natural or artificial regeneration, seedlings or coppice forests, 
fragmentation, and overexploitation have a tremendous influence on the genetic 
diversity and population structure of forest trees. This paper aimed to review the 
impacts of these activities on the genetic diversity of forest trees. For this, we 
reviewed several scientific literature related to forest management practices that 
affect genetic diversity. Altogether,75 papers were reviewed, interpreted, and 
evaluated to prepare our final manuscript. The result of this study recommends that 
the level of genetic impacts varies with management activities, stand structure as 
well as species characteristics. There is very limited information about the impacts 
of forest management practices on the genetic diversity of forest trees since it is 
only focused on the growth of stands. The field research activities for species-
specific must be executed considering ecological and reproductive parameters to 
assure sustainable forest ecosystems. Hence, this review will be beneficial for forest 
conservationists, researchers, and managers for the management of forests through 
better forest management activities preserving a genetic pool of the forest trees, and 
sustainable utilization of forest products. 

 

INTRODUCTION 
Genetic diversity refers to those individuals 

within a population who do not share the same 
genotype, resulting in differences in appearance and 
behavior (Koski, 2000). It is the basis for species 
and individuals to adapt, evolve, and survive, 
particularly in changing environments and disease 
conditions (Rajora & Pluhar, 2003). Genetic 
diversity intensifies the sustainable survival of 
populations (Bouzat, 2010). At the ecosystem level, 
the genetic diversity of keystone species affect 
species diversity in relevant communities (Vellend 
& Geber, 2005; Whitham et al., 2006). The 
population is on the verge of extirpation where 
genetic diversity is often lacking (Markert et al., 
2010). The factors including inbreeding depression 
(ID), genetic drift, and small population size are 
responsible for reducing genetic diversity.  

The risk of extinction of fragmented and 
threatened populations is likely to increase when 

exhibited to these conditions (Frankham et al., 
2002; Madsen et al., 1999). The correlation between 
genetic and species diversity has received limited 
attention due to the complexity in methods in 
comparing evolutionary processes at the population 
and group(Fitzpatrick & Keller, 2015; Genung et 
al., 2011; Lowe et al., 2018; Vellend & Geber, 
2005). The study of these two diversity in a 
population is used to evaluate evolutionary 
dynamics, diagnose potential threats and establish 
the conservation strategies for their preservation 
(Bailey et al., 2009; Frey et al., 2016; Laroche et al., 
2015; Lowe et al., 2018; Messmer et al., 2012). The 
phenomenon including mutation, selection, 
migration, and mating system maintains evolution 
and modifies genetic diversity within the 
species(Mullin & Bertrand, 1999). 

Forest management aims to provide a variety 
of forest products and services(Mendoza & Prabhu, 
2000). The biodiversity within and among the forest 
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ecosystems is not even completely represented by 
diverse forest management systems (Günter et al., 
2011). The role of genetic diversity in forest 
management and regeneration is often neglected 
despite being explicitly mentioned in several kinds 
of scientific literature (Kettenring et al., 2014). 
Forest management activities concentrated on the 
partial or clear cut system, natural and artificial 
regeneration systems have effects on genetic 
diversity in remaining or regenerated forest 
populations (Buchert et al., 1997; Rajora, 1999; 
Rajora & Dancik, 2000). Comparing to virgin 
forests, forest management activities accompanying 
silvicultural practices during regeneration, stand 
growth, and harvesting can alter environmental 
conditions (Finkeldey & Ziehe, 2004).  

The genetic variation that is attributed to basic 
evolutionary mechanism changes is due to forest 
management activities (Namkoong et al., 1996). 
The changes in the genetic structure of forest 
species may be visible and convenient to a specific 
management scheme, such as the establishment of 
clonal plantations. Forest management has mostly 
been used as an anthropogenic practice to received 
human needs, and its implementation has modified 
the succession, original composition, and structure 
of the forest (Fabbio et al., 2003). Moreover, forest 
managers; often change the genetic structures of 
forest trees incidentally (Finkeldey & Ziehe, 2004). 
Forest management can influence genetic resources 
through drift-related processes (small seeders), 
mating system-related processes (reproductive 
isolation), fertility and viability selection processes 
(plus tree selection), and migration-related 
processes (transfer of forest reproductive material) 
(Buiteveld et al., 2007). 

This review is intended to provide updated and 
comprehensive information on the dynamics of 
genetic structures introduced from forest 
management practices. It also solves the questions 
on the variation of genetic diversity and vitality of 
trees regarding several forest management activities 
to sustain the forest ecosystem sustainably and 
producible. It also reveals the effect of stand 
management on their genetic constitution and will 
be helpful for forest and genetic researchers, 
policymakers, forest managers, and several 
institutions for the better management of the forest 
to intensify better genetic diversity within the forest 
trees. 

MATERIALS AND METHODS 
Search engine and search terms 

The original aim of this paper was to undertake 
a systematic review of literature on genetic diversity 
in forest trees as a result of forest management 
activities. Research Gate, Google Scholar, and 
Scopus were the three databases used to find those 
relevant words which are mentioned in Table 1. 

Table 1. Keywords searched in Google Scholar, 
Research Gate, and Scopus 

Search Terms Search Terms 
Genetic Diversity Genetic impacts 
Forest management activities                         Ecology 
Silvicultural systems           Genetic drift                                      
Demography                        Forest conversion 
Species diversity                                           Hereditary diversity 
Gene flow                                                             Genotypes                         
Population structure            

Article screening  
We downloaded over 752 papers titled “Forest 

management and its effect on the gene of plant 
trees”, but most of them were duplicates, so we 
screened and deleted them first. We filtered the 
paper in the second process by looking at the title 
and results. The papers with unavailability of full 
text and not matched with our abstract were also 
removed. Finally, only those papers that included 
data on the genetic diversity of forest trees due to 
forest management practices. 
Data review, collection, and analysis 
We reviewed 75 articles as final documents for our 
research with the search limited to publications 
published from 1979 to 2020. They were closely 
analyzed several times, and information on plant 
species such as matting patterns, gene variation, and 
species distribution, ecology, and biological 
distribution, allele frequency in plant species, forest 
composition, and progeny were compiled in one 
section. The information was collected and 
organized to make this manuscript which we re-
checked manually and with the free Grammarly app 
for Microsoft Office version 6.8.249 to eradicate 
errors. 

 

RESULTS AND DISCUSSION 
Some of the forest management activities that 

affect the genetic composition of forest trees are:  
1. Harvesting  

Harvesting practices have an impact on the 
genetic constitution of both existing and future 
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stands which has the potential to affect the mating 
system dynamics of trees (Centre & Beaulieu, 
2004). Forest harvesting is expected to have a large 
impact on the inbreeding, gene flow, mating system, 
selection, and the population structure of 
stands(Fageria & Rajora, 2013). It changes the 
demographics of forest populations, shortening age 
structure, and selection environments. So, the 
changes in genetic diversity due to harvesting 
should be interpreted from the perspectives of 
selection intensity (Ledig, 1992). The density and 
spatial distribution of parent trees are affected by 
the harvesting practices that alter the allele’s 
frequency due to genetic drift (Gillies et al., 1999).  

The impact of forest harvesting in genetic 
diversity practices is based on existing operational 
harvesting treatments since controlled experimental 
harvesting and regeneration trials are long-term and 
very costly (Ratnam et al., 2014). Nowadays, 
harvesting is chiefly focused on commercial species 
rather than non-commercial species. The studies of 
North American species i.e. Piceaglauca by Fageria 
and Rajora (2014) suggested that the genetic 
diversity in clear-cutting is less as compared to 
natural old-growth and young regeneration (Ratnam 
et al., 2014). Moreover, intensive or selective 
silvicultural harvesting degrades the population 
gene pool, so possibilities of inbreeding and genetic 
drift may occur due to a decline in gene exchange 
among populations (Finkeldey & Ziehe, 2004). 
However, the consequences of harvesting on 
genetic diversity differ according to the species, 
species traits, distribution, silvics, demography of 
forest populations, and harvesting and management 
practices (Buchert et al., 1997; Perry & Bousquet, 
2001; Rajora, 1999; Rajora & Pluhar, 2003; Rajora 
& Dancik, 2000).  
2. Thinning 

It is the silvicultural procedure that is 
conducted to reduce densities of trees to strengthen 
the health and growth of residual trees(Hosius et al., 
2006; Kavaliauskas et al., 2018; Kerr & Haufe, 
2011). The principle of thinning is to promote the 
development of precious trees, for economic 
prospects, by excluding adjoining ones. Many 
investigations on genetic diversity mentioned both 
the positive and negative responses of logging 
(thinning and selective thinning) in forest trees. The 
growth and weevil damage was analyzed in 
seedlings between thinned and unthinned stands of 

eastern white pine (Pinusstrobus) by Ledig and 
Smith (1981)observed reduction in inbreeding and 
weevil damage due to the effectuality of selection.  

However, the studies of Mediterranean 
species, such as in QuercusPyrenaica by Valbuena-
Carabaña et al. (2008) advised that intensive 
thinning resulted in drastic losses in the genetic 
diversity of the populations. So, selective forest 
thinning preserves genetic diversity and adaptability 
since the forest is never completely felled and 
comprises trees of different species, sizes, and ages 
over time(Konnert & Hussendörfer, 2001). A 
silvicultural operation like thinning lessens the 
number of trees in the stand encourages natural 
regeneration, and the remaining trees become more 
vigorous(Hosius et al., 2006; Kavaliauskas et al., 
2018; Kerr & Haufe, 2011). 
3. Types of stand established 

Forest stands can be established via natural 
regeneration, planting of seedlings, or direct 
seeding. 
Natural regeneration 

In the case of natural regeneration, there is no 
loss of genetic diversity because a large number of 
trees are included in the reproduction phenomenon 
(Monika Konnert & Hosius, 2010).  But if only a 
few seeder trees are selected for the next generation, 
population sizes will be reduced because of genetic 
drift(Aravanopoulos, 2018). Natural regeneration 
does not constitute adaptive and non-adaptive 
changes of genetic structure but they convey the 
genetic character to succeeding generations during 
the regeneration period (O. Rajora & Pluhar, 2003). 
Natural regeneration can also be integrated with 
artificial regeneration depending on the 
management objectives (Paquette, Bouchard, & 
Cogliastro, 2006). Forest management and 
silvicultural practices target natural regeneration by 
protection from grazing and artificial regeneration is 
only carried out when natural regeneration appears 
to be unsuccessful (Aravanopoulos, 2018). 
Artificial regeneration 

Artificial regeneration boosts genetic variation 
and yield through the selection of superior 
provenances (White, Adams, & Neale, 2005). 
Enrichment planting (reforestation) can be 
performed to produce a high number of worthy 
species and to raise the stocking of trees where 
natural regeneration is inadequate or not uniformly 
disseminated (Paquette et al., 2006). Though 
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plantation of commercial species improves genetic 
divergence when their population reaches to extent 
level, it may result in the extrusion of 
indigenous/endemic species which endangered the 
genetic diversity (Ledig, 1992).  

However, the genetic constitution of the 
recently established stand is determined by the 
origin of seeds such as seed orchard, seed stand, etc. 
(Kavaliauskas et al., 2018). E.g., the genetic 
diversity is higher in the seed orchard having a large 
number of clones than in the seeds gathered from 
feral stands (Lefèvre, 2004). To ensure superior 
genetic variation in artificially regenerated stands, 
the quantity of trees from which the seed is gathered 
plays a significant role (Konnert & Hosius, 2010; 
Westergren et al., 2017). When large quantities of 
nursery stock are produced from the same seed 
source, the planted stands in a wide area may be 
genetically quite similar (Nicolls, 1979). The 
diseased seedlings may behave as a midway to 
transfer pathogens which might result in the 
outbreak of diseases around plantation sites (FRTC, 
2017). The planted stands have lower juvenile 
mortality than naturally regenerated stands (Muona 
et al., 1988). de Lacerda et al. (2008) mentioned 
that the level of genetic variation increases from 
juvenile to adult stages. The lower number of seed 
trees that contributed to planted offspring’s from 
fewer populations reflects the strong genetic 
differentiation (Al-Hawija et al., 2014).  
4. Seedling vs. Coppice forests 

Coppicing includes the sprouting of basal 
shoots which aids faster production of woods 
(Kadavý et al., 2011). Depending on the 
management objectives, coppicing rotation varies 
from 5- 40 years which is comparatively less than 
seed origin (Holišová et al., 2016). Coppicing 
increases the entire biodiversity of the forest, 
principally in the case of heliophile species, and 
also can be the suitable alternative when seedlings 
establishment is troublesome (Baeten et al., 2009; 
Spitzer et al., 2008; Van Calster et al., 2007). 
Coppicing management is cheaper than high forest 
(seedlings origin) but produces thin stems of 
inferior quality than of high forests (Fujimori, 2001; 
Kneifl et al., 2011). Seedlings have greater genetic 
diversity as compared to sprouts, so there are higher 
chances of increasing genetic drift and reduced 
adaptation to environmental constraints in 
coppicing (Lloret et al., 2004). However, Holišová 

et al. (2016) mentioned that coppicing is better 
drought tolerance because of self-shading and larger 
roots system of sprouts but the larger trees from 
seedlings origin may suffer from drought conditions 
due to greater reduction in the conductance in their 
leaves. 
5. Fragmentation and Overexploitation 

In recent decades, forest fragmentation is a 
comprehensive problem with disastrous degradation 
and overexploitation of forests throughout the world 
(Watson et al., 2016). Global diversity is declining 
due to habitat destruction, degradation, and 
fragmentation (Baur & Erhardt, 1995; Sala et al., 
2000; Wilson et al., 2016). The detachment of 
habitat into smaller and more separated patches by a 
matrix of the human-modified land cover appears in 
long-term impacts on biodiversity and ecological 
processes (Haddad et al., 2015). Forest 
fragmentation and overexploitation may diminish 
productive population sizes that restrain gene flow 
and inbreeding depression occurs, which ultimately 
decreases the species' genetic diversity and fitness 
(Aravanopoulos, 2018). For example- If the gap 
among the populations is huge for pollination then, 
pollen exchange is restricted (Ward & Johnson, 
2005) and inbreeding and/or outbreeding among 
intimately associated species takes place due to 
which plant fitness may be reduced(Hooftman et al., 
2003).  

Fragmentation may affect the vector of pollen 
transport itself, so animal pollinated plant species 
may be more vulnerable than wind-pollinated plant 
species. Thus, seeds and pollen dispersal 
cooperatively influence genetic diversity in plant 
species (Schlaepfer et al., 2018). Fragmented 
population, lack of dispersal medians, and restricted 
regeneration are the central threats in tropical and 
subtropical forests(Finger et al., 2012; Zeng & 
Fischer, 2020). The long-lasting consequences of 
overexploitation, population fragmentation, and 
isolation impose the continuous dropping of genetic 
variation that can lead to the extinction of 
species(Chapin Iii et al., 2000; Ewers & Didham, 
2006; Fahrig, 2003). However, those negative 
results vary according to the organism population, 
habitat nature, and genetic measure(Schlaepfer et 
al., 2018). But most of the field studies cited that 
both fragmentation and overexploitation harm the 
genetic diversity of forest trees (Aravanopoulos, 
2018). 
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Forest management activities have greater 
impacts on genetic, individual, population, species, 
and ecosystem levels of diversity. Therefore, the 
knowledge of it is vital for the conservation of the 
genetic resources of forests (Finkeldey & Ziehe, 
2004; Ledig, 1992; Lefèvre, 2004; Ratnam et al., 
2014). Several factors like forest types, site 
conditions, local traditions, and climatic zones are 
responsible to determine the forest management 
activities (Spiecker, 2003). It can change tree 
density and age class structure during forest stand 
rotation, so have significant effects on connectivity 
and effective population size (Ledig, 1992). Public 
authority along with the demands of societies is also 
the determinant for different silvicultural methods 
for forest management (Kimmins, 2008).  

Silviculture practices can transform both 
selective and demographic phenomenon and can 
significantly modify the environment (Banks et al., 
2013). The selective and clear-cut operations 
followed by natural or artificial regeneration have 
greater impacts on population composition and 
mating patterns, and ultimately genetic diversity of 
forest trees (Ratnam et al., 2014). The genetic 
characters of the upcoming generation are 
influenced by the selection criteria of seed trees 
such as spatial distribution, number, and phenotype. 
Genetic diversity can be improved by better 
management, intensity, and selection criteria 
applied (Ratnam et al., 2014; Schaberg et al., 2008). 
Furthermore, several factors have significant 
impacts on the genetic variability of the forest both 
directly through crop tree selection, management 
systems implemented, breeding, and seed transfer 
and indirectly through ecological circumstances 
dynamics (Lefèvre, 2004; Ratnam et al., 2014; 
Schaberg et al., 2008).  
 

CONCLUSION 
The broad survey of the literature concludes 

that forest management activities influence the 
structure of genetic diversity and evolutionary 
processes of forest stands. Higher genetic variation 
is demanded the sustainable durability and 
robustness of biological populations because it is a 
basis for future adaptation is required to sustain 
environmental stresses due to natural and 
anthropogenic factors. Trees reach their 
reproductive maturity in a longer period and due to 
their highest life span, they are more probable to 

face more environmental modifications. So, a 
higher degree of genetic diverseness is essential for 
their endurance and survival. Many variables affect 
the genetic variation and adaptive capacity of the 
forests. Silviculture and forest management 
activities such as harvesting, thinning, natural 
regeneration and artificial regeneration, seedlings 
and coppice forests, fragmentation, and 
overexploitation are the parameters to determine 
genetic diversity among forest populations. It also 
varies according to the species biology, ecological 
characteristics, and others factors aforementioned. 
In the nutshell, our review has established that: (1) 
Partial harvesting is more preferable than clear cut 
harvesting as the latter reduces the genetic diversity 
of forest populations, (2) Thinned stands are 
healthier than unthinned stands and selective forest 
thinning maintains genetic diversity and adaptation, 
(3) Natural and artificial regeneration, seedlings and 
coppices depends on the management objectives 
whether the purpose is to maintain genetic diversity 
or not,  and (4) Adverse effects on genetic diversity 
of forest species are more prominent in intensive 
thinning, fragmentation and overexploitation. 

Our review found that there is relatively less 
information about forest genetics worldwide 
especially in Nepal. So, in this modern era of 
research and technology, more experiments should 
be performed regarding forest genetics and the 
impact of forest management on the genetic 
diversity of tree species to manage forest 
ecosystems sustainably and effectively. Though, 
these studies revealed limited information; further 
study must be performed to develop the objectives 
of sustainable forest management concerning 
genetic diversity as it determines the longer health 
of forest trees. 
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