Comparative Study by Experiment of Design Cooling System Between Air Cooling and Water Spray Cooling Method for Optimization of Solar Photovoltaic
DOI:
https://doi.org/10.47540/ijias.v4i2.1455Keywords:
Air Cooling, Comparative Study, Optimization of Solar Photovoltaic, Water Spray CoolingAbstract
Solar photovoltaic is a renewable energy that has great potential and is quite cheap. However, solar cells are sensitive to temperature through the parameters of their semiconductor materials. The optimal solar photovoltaic temperature range is 25◦C- 40◦C. Based on the study, the optimal temperature of the solar photovoltaic system is 41◦C. The problem is that solar photovoltaics do not produce power optimally when the surface temperature reaches 41◦C so the power produced decreases. The cooling system is one solution to overcome temperature problems in solar photovoltaics. The purpose is to design an automatic cooling system based on water and air spray using Arduino Uno which operates only at solar photovoltaic surface temperatures above 41◦C and compare the working effectiveness of the cooling system using water spray and air when the surface of the solar photovoltaic reaches maximum heat and does not work optimally. Methods. Design and develop a water and air-spray-based cooling system using an experimental process. Results. The automatic cooling system has been designed using a water spray cooling method and a DC fan-based air cooling method. The water spray cooling method can reduce the temperature optimally with an average temperature of 38.67◦C and the air cooling method can reduce the temperature optimally with an average temperature of 39.5◦C. The water spray cooling method had an efficiency value of 36% and the DC fan-based water cooling method had an efficiency value of 16%.
References
Ahmed, O. K., Algburi, S., Daoud, R. W., & Aziz, E. F. (2022). Photovoltaic storage solar collector: Experimental assessment. Energy Reports, 8, 13698–13707.
Ant. Ardtah Kristi, Abdullah Alhaddad, Muhammad Abdurrahman Hafidhuddien, Noviadi Arief Rachman, Agus Risdiyanto, Bambang Susanto, & Agus Junaedi. (2020). Perancangan Sistem Pendingin Photovoltaic dengan Memanfaatkan Kontroler Water Spray. ELKHA, 12(2), 47–53.
Azmi, M. S. F. M., Hussain, M. H., Rahim, S. R. A., Mid, E. C., Shaari, A. S., Hashim, N., Husny, N., & Ahmad, M. F. (2023). Hybrid Cooling System for Solar Photovoltaic Panel. Journal of Physics: Conference Series, 2550(1).
Ceylan, I., Gürel, A. E., Demircan, H., & Aksu, B. (2014). Cooling of a photovoltaic module with temperature controlled solar collector. Energy and Buildings, 72, 96–101.
Cho, I., & Kim, H. (2019). Study on PV Panel Cooling System using IoT with ESS for Preventing Reduced Efficiency of Solar Panel. IOP Conference Series: Earth and Environmental Science, 342(1).
Conrado F., Ostia, J., Jesus Martinez, Kebet A. Abonal, Almira Marie M. Miranda, Christian Dave P. Urquia, & Jonathan Andrei S. Cruz. (2019). A Comparative Study of Different Self-Cooling Mechanisms for Photovoltaic Systems. International Conference on Control, 11–14.
Dhami Johar Damiri, & Ditha Nevella Sembiring. (2023). Perancangan Automatic Cooling System Solar Power (AuCS-SP) Berbasis Arduino Uno Untuk Mempertahankan Kinerja Solar Panel. Prosiding Seminar Nasional Energi, Telekomunikasi Dan Otomasi, 210–219.
Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21.
Galieh Ananda, Mohamad Dimas Nur Hakim, & Rindi Wulandari. (2024). Rancang Bangun Solar Panel 20WP untuk Menentukan Suhu Operasi Kerja.
Ghorpade, S., Farakte, B., Kulaye, S., Pawar, S., & Wagh, D. (n.d.). Efficiency Improvement Of Solar Panel Using Different Cooling Techniques-A Review.
Indra Bayu, J., Budi Sulistiyawati, I., & Putu Agustini, N. (2023). Monitoring Pengaruh Suhu Pada Panel Surya Terhadap Performa Keluaran Pembangkit Listrik Tenaga Surya. Jurnal Fortech, 4(1), 27–32.
Jaleel Mahdi, E., Algburi, S., Al-Abadi, N., Ahmed, O. K., & Ahmed, A. K. (2024). Photovoltaic panel cooling using ground source energy: CFD simulation. Results in Engineering, 22.
K. Latreche, R. Taleb, A. Bentaallah, A.E. Toubal Maamar, M. Helaimi, & F. Chabni. (2024). Design and experimental implementation of voltage control scheme using the coefficient diagram method based PID controller for two-level boost converter with photovoltaic system. Electrotechnical Complexes and Systems, 1(1), 1–9.
Kalil Ahmed, O., Hassan, A. A., Fadhel Abbas, E., & Waadullah Doud, R. (n.d.). Ntu Journal for Renewable Energy Numerical and experimental assessment of PV/Solar Chimney.
Kamarudin, M. N., Rozali, S. M., & Jamri, M. S. (2021). Active cooling photovoltaic with IOT facility. International Journal of Power Electronics and Drive Systems, 12(3), 1494–1504.
Khan, M. A., Ko, B., Nyari, E. A., Park, S. E., & Kim, H. J. (2017). Performance evaluation of photovoltaic solar system with different cooling methods and a Bi-reflector PV system (BRPVS): An experimental study and comparative analysis. Energies, 10(6).
Kusuma, V. A., Aprillia, H., Suprapto, S. S., Ramadhani, M. N., Firdaus, A. A., & Putra, D. F. U. (2023). Analysis of the effect of a microcontroller-based solar panel cooling system on temperature and power output. International Journal of Applied Power Engineering, 12(2), 119–125.
Laseinde, O. T., & Ramere, M. D. (2021). Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling. Procedia Computer Science, 180, 239–248.
Laseinde, T., & Ramere, D. (2019). Low-cost automatic multi-axis solar tracking system for performance improvement in vertical support solar panels using Arduino board. International Journal of Low-Carbon Technologies, 14(1), 76–82.
Latiff, M. R., Hassan, O. A., Ahmad, M. S., Norjali, R., & Zainal, M. S. (2020). Improve Efficiency of An Automated Photovoltaic Solar Tracker with Cooling System for Renewable Energy Application. Progress in Engineering Application and Technology, 1(1), 257–266.
Mahmood Ibrahim, A., R. Ibraheem, R., & Bakr Weli, R. (2023). Energy Saving in Batteries Using the Photovoltaic System. Al-Kitab Journal for Pure Sciences, 4(1), 78–94.
Milind, N., Antony, M., Francis, F., Francis, J., Varghese, J., & U K, S. (2017). Enhancing the Efficiency of Solar Panel Using Cooling Systems. International Journal of Engineering Research and Applications, 07(03), 05–07.
Mosavi, A., Salimi, M., Ardabili, S. F., Rabczuk, T., Shamshirband, S., & Varkonyi-Koczy, A. R. (2019). State of the art of machine learning models in energy systems, a systematic review. In Energies (Vol. 12, Issue 7). MDPI AG.
Mostakim, K., Akbar, M. R., Islam, M. A., & Islam, M. K. (2024). Integrated photovoltaic-thermal system utilizing front surface water cooling technique: An experimental performance response. Heliyon, 10(3).
Niraj Kumar Kushwaha, Prashant R.D, & Sagar K.C. (2023). Design and Experimental Study of A Solar PV Cooling System.
Paquianadin, V., Sam, K. N., & Koperundevi, G. (2024). Maximizing solar photovoltaic system efficiency by multivariate linear regression based maximum power point tracking using machine learning. Electrical Engineering and Electromechanics, 2024(1), 77–82.
Popovici, C. G., Hudişteanu, S. V., Mateescu, T. D., & Cherecheş, N. C. (2016). Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks. Energy Procedia, 85, 425–432.
Rezki, M., Rusilawati, R., & Irfan, I. (2023). Optimalisasi Daya Panel Surya Menggunakan Sistem Pendingin Berbasis Air Otomatis. Jurnal EEICT (Electric Electronic Instrumentation Control Telecommunication), 6(2).
Saleh, M. J., Atallah, F. S., Algburi, S., & Ahmed, O. K. (2023). Enhancement methods of the performance of a solar chimney power plant: Review. In Results in Engineering (Vol. 19). Elsevier B.V.
Setyono, G., Kholili, N., & Rakhmadanu, Y. (2022). The Impact of Utilization The Solar-Panels With a Cooling-Water System as a Source of Micro-Power Generation. Infotekmesin, 13(1), 87–92.
Sultan, T. N., Farhan, M. S., & Salim Alrikabi, H. T. H. (2021). Using Cooling System for Increasing the Efficiency of Solar Cell. Journal of Physics: Conference Series, 1973(1).
Supian, B. A., Ekaputri, C., & Priharti, W. (2020). Increasing the output power of solar panel by using cooling system. IOP Conference Series: Materials Science and Engineering, 830(3).
Swatara Loegimin, M., Sumantri, B., Ari Bagus Nugroho, M., Ayub Windarko, N., Elektronika Negeri Surabaya Jl Raya ITS, P., & Sukolilo, K. (2020). Sistem Pendinginan Air Untuk Panel Surya Dengan Metode Fuzzy Logic. In Jurnal Integrasi (Vol. 21, Issue 1).
Syafiqah, Z., Irwan, Y. M., Amin, N. A. M., Irwanto, M., Leow, W. Z., & Amelia, A. R. (2017). Thermal and electrical study for PV panel with cooling system. Indonesian Journal of Electrical Engineering and Computer Science, 7(2), 492–499.
Tabaei, H., & Ameri, M. (2015). Improving the Effectiveness of A Photovoltaic Water Pumping System by Using Booster Reflector and Cooling Array Surface by A Film of Water. In Transactions of Mechanical Engineering (Vol. 39, Issue 1).
Virtuani, A., Pavanello, D., Friesen, G., Virtuani, A., Pavanello, D., & Friesen, G. (2010). Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies.
Widjanarko, W., Alia, N., Dani, A., & Perdana, F. A. (2021). Experimental analysis of temperature, light intensity, and humidity on rooftop standalone solar power plant. IOP Conference Series: Materials Science and Engineering, 1073(1), 012047.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Galieh Ananda, Mohamad Dimas Nur Hakim, Rindi Wulandari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.