Design of System Monitoring for Floating Solar Pane Energy Based on IoT: Blynk

Authors

  • Febri Suprayogi Department of Electrical Engineering, University of Swadaya Gunung Jati, Indonesia
  • Sachmalevi Al Fatah Department of Electrical Engineering, University of Swadaya Gunung Jati, Indonesia
  • Rindi Wulandari Department of Electrical Engineering, University of Swadaya Gunung Jati, Indonesia

DOI:

https://doi.org/10.47540/ijias.v4i3.1582

Keywords:

Floating Solar Panels, Floating System Monitoring, Monitoring Comparison, Solar Panel Monitoring

Abstract

Floating Solar Power Plant is one of the energy plants that does not damage nature because solar panels are new renewable energy or EBT and are very effective in supporting world conservation and can be applied in remote areas in Indonesia. This research aims to design and create an IoT-based Floating Solar Power Plant monitoring system. The research methodology used is the experimental method by designing hardware and software monitoring systems, the hardware consists of temperature sensors, voltage sensors, and current sensors connected to a microcontroller. The result of this research is a monitoring system on floating solar panels using esp8266, DHT11, and ACS712. Tests conducted on the monitoring system have an average error value of 1.08% for temperature measurements, these results are based on comparing data on the system and manual measurements with calibrated measuring instruments. Current and voltage measurements have an error value of 4.65% and 2.20%.  Based on the test results, it can be said that the monitoring system can work well, because the error value obtained is relatively small in the measurement of temperature, current, and voltage compared to the manual monitoring, from a fairly small error value can be concluded that the monitoring of the floating solar power plant made has worked well.

References

Jasim, M., K. Ahmed, O., & Alaiwi, Y. (2023). Performance of solar stills integrated with PV/Thermal solar collectors: A review. NTU Journal of Renewable Energy, 4(1), 97–111.

Ananda, G., Hakim, M. D. N., & Wulandari, R. (2024). Comparative Study by Experiment of Design Cooling System Between Air Cooling and Water Spray Cooling Method for Optimization of Solar Photovoltaic. Indonesian Journal of Innovation and Applied Sciences (IJIAS), 4(2), 133-140.

Andini, S., Suwartha, N., Setiawan, E. A., & Ma’arif, S. (2022). Analysis of Biological, Chemical, and Physical Parameters to Evaluate the Effect of Floating Solar PV in Mahoni Lake, Depok, Indonesia: Mesocosm Experiment Study. Journal of Ecological Engineering, 23(4), 201–207.

Asrori, A., & Susilo, S. H. (2020). The Performance Improvement of Polycrystalline Pv-Module By the Solar Tracker System Under Indonesia Climate. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD). 10(3), 16393–16404.

Bahers, T. Le, Re, M., & Sautet, P. (2014). Semiconductors Used in Photovoltaic and Photocatalytic Devices : Assessing Fundamental Properties from DFT.

Bilgen, S., Kaygusuz, K., & Sari, A (2004). Renewable Energy for a Clean and Sustainable Future. Energy Sources. 26(12), 1119-1129.

Bošnjakovic, M., & Tadijanovic, V. (2019). Environment impact of a concentrated solar power plant. Tehnicki Glasnik, 13(1), 68–74.

Botta, A., Donato, W. De, Persico, V., Pescape, A.. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, (56), 684-700

Cahyo, A. D., & Y, R. M. F. A. (2024). Utilization of a Low-Speed Neodymium Wind Turbine Generator as an Alternative Power Source for Homes in the North Cirebon Coastal Area, Indonesia. Malaysian J. Sci. Adv. Tech. 4(3), 316–321.

Cazzaniga, R., Cicu, M., Rosa-Clot, M., Rosa-Clot, P., Tina, G. M., & Ventura, C. (2018). Floating photovoltaic plants: Performance analysis and design solutions. Renewable and Sustainable Energy Reviews, 81(April), 1730–1741.

Eghtedarpour, N., & Farjah, E. (2014). Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid. IET Renewable Power Generation, 8(1), 45–57.

Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.

Esmaeili Shayan, M., & Hojati, J. (2021). Floating Solar Power Plants: A Way to Improve Environmental and Operational Flexibility. Iranian Journal of Energy and Environment, 12(4), 337–348.

Gunoto, P., Rahmadi, A., & Susanti, E. (2022). Perancangan Alat Sistem Monitoring Daya Panel. Sigma Teknika, 5(2), 285–294.

Haas, J., Khalighi, J., de la Fuente, A., Gerbersdorf, S. U., Nowak, W., & Chen, P. J. (2020). Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management, 206(January).

Haryudo, S., Sulistyo, E., Wiyono, A., Rusimanto, P. W., & Wijayanto, D. (2023). Monitoring Current and Voltage in PLTS On-Grid System Based on Internet of Things (IoT) Using Telegram Application. Proceedings of the 4th Annual Conference of Engineering and Implementation on Vocational Education, ACEIVE 2022, 20 October 2022, Medan, North Sumatra, Indonesia, 1–8.

Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci, B., & Andreescu, S. (2015). Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. Proceedings - 2015 IEEE International Conference on Services Computing, SCC 2015, 285–292.

Kadang, S. (2022). Improving Research Infrastructure in Indonesia through Public Private Partnership (PPP). The Journal of Indonesia Sustainable Development Planning, 3(2), 149–163.

Lopez-Varo, P., Bertoluzzi, L., Bisquert, J., Alexe, M., Coll, M., Huang, J., Jimenez-Tejada, J. A., Kirchartz, T., Nechache, R., Rosei, F., & Yuan, Y. (2016). Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Physics Reports, 653, 1–40.

Luckyardi, S., Gaol, T. V. L., & Oktafiani, D. (2021). Assessment of the water quality and environmental management in Jangari reservoir watershed using selected physical, chemical, and biological parameters. Journal of Engineering Science and Technology, 16(6), 4518–4529.

M. Sadeeq, M. A., & Zeebaree, S. (2021). Energy Management for Internet of Things via Distributed Systems. Journal of Applied Science and Technology Trends, 2(02), 80–92.

Mahmudah, A. (2021). Analisis Perencanaan Pembangkit Listrik Tenaga Surya 400 WP di Gedung Laboratorium Terpadu Universitas Muhammadiyah Surabaya. Jurnal FORTECH, 3(1), 17–26.

Makki, A., Omer, S., & Sabir, H. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews, 41, 658–684.

Mayangsari, R., & Yuhendri, M. (2023). Sistem Kontrol dan Monitoring Pembangkit Listrik Tenaga Surya Berbasis Human Machine Interface dan Internet of Thing. JTEIN: Jurnal Teknik Elektro Indonesia, 4(2), 738–749.

Ng, N., & Kingdom, U. (2013). Renewable energy technologies and. 1(October), 102–116.

Nrartha, I. M. A., Wikapti, I. A. N. I., & Muljono, A. B. (2023). Monitoring system design for off-grid solar power plant based on internet of things. Dielektrika, 10(1), 14–23.

Nugraha, A. Y. (2023). Analisis Perencanaan Investasi Pembangkit Listrik Tenaga Surya (PLTS) Apung di Waduk Brigif Jakarta Selatan. Repository Politeknik Negeri Jakarta.

Nurosyid, F., Supriyanto, A., Suryana, R., & Iriani, Y. (2019). Aplikasi Plts on Grid Pada Usaha Pembesaran Lele. Jurnal Kewirausahaan dan Bisnis, 22(12), 1–6.

Rachmawati, I. (2024). The impact of the Covid-19 pandemic on Indonesia’s Energy Transition. Sinergi: Journal of Strategic Studies & International Affairs, 4(1), 21–44.

Sahu, A., Yadav, N., & Sudhakar, K. (2016). Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, 815–824.

Setiawan, I. K. A., Kumara, I. N. S., & Sukerayasa, I. W. (2014). Analisis Unjuk Kerja Pembangkit Listrik Tenaga Surya (PLTS) Satu MWp Terinterkoneksi Jaringan di Kayubihi, Bangli. Majalah Ilmiah Teknologi Elektro, 13(1), 27–33.

Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181–189.

Sigalingging, T. M., & Ananda, Y. (2021). Rancang Bangun Alat Suplai Energi Ruangan Sterilisasi Menggunakan Sistem Tenaga Surya. Jurnal Simetri Rekayasa, 5035, 178–186.

Sitompul, R. F., Endri, E., Hasibuan, S., Jaqin, C., Indrasari, A., & Putriyana, L. (2022). Policy Challenges of Indonesia’s Local Content Requirements on Power Generation and Turbine Production Capability. International Journal of Energy Economics and Policy, 12(1), 225–235.

Suh, J., Jang, Y., & Choi, Y. (2020). Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A Case Study on the Hapcheon Dam, Korea. Sustainability (Switzerland), 12(1).

Suryanto, B. (2021). Sistem Monitoring Panel Surya Berbasis Website MSI Transaction on Education. MSI Transaction on Education, 02(01), 7-18.

Wu, F., Rüdiger, C., & Yuce, M. R. (2017). Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System. Sensors, 17, 282.

Yadav, S. K., & Bajpai, U. (2018). Performance evaluation of a rooftop solar photovoltaic power plant in Northern India. Energy for Sustainable Development, 43, 130–138.

Published

2024-10-30

How to Cite

Suprayogi, F. ., Al Fatah, S. ., & Wulandari, R. (2024). Design of System Monitoring for Floating Solar Pane Energy Based on IoT: Blynk. Indonesian Journal of Innovation and Applied Sciences (IJIAS), 4(3), 217-224. https://doi.org/10.47540/ijias.v4i3.1582