Optimizing Simple Exponential Smoothing for Time Series Forecasting in Supply Chain Management
DOI:
https://doi.org/10.47540/ijias.v4i3.1591Keywords:
Exponential Smoothing, Optimization, Supply Chain Management, Time Series ForecastingAbstract
This paper deals with optimizing Simple Exponential Smoothing for time series forecasting in supply chain management, particularly in the transport and automotive sectors. This paper attempts to enhance the accuracy of the forecast by estimating an optimal smoothing constant α with the Mean Squared Error as the objective function. This optimization exercise will be done using MATLAB's fminsearch function. Indeed, results realize substantial improvements in the accuracy of the forecast, validated using different error metrics and graphical representations.
References
Abdelati, M. H. (2024). Smart Traffic Management for Sustainable Development in Cities: Enhancing Safety and Efficiency. International Journal of Advanced Engineering and Business Sciences, 5(1).
Abdelati, M. H., Abd-El-Tawwab, A. M., Ellimony, E. E. M., & Rabie, M. (2024). " Efficient and Versatile Methodology for Solving Solid Transportation Problem Using Excel Solver: A Comparative Study with LINGO Code. Industrial Engineering, 3(1).
Abdelwali, H. A., & Abdelati, M. H. (2024). Enhancing Time Series Forecasting with the Advanced Cumulative Weighted Moving Average Technique. International Journal of Advanced Scientific Innovation, 6(7).
Ahmed, M. I., & Kumar, R. (2023). Nodal electricity price forecasting using exponential smoothing and Holt’s exponential smoothing. Distributed Generation & Alternative Energy Journal, 1505-1530.
Alardhi, M., Abdelwali, H. A., Khalfan, A. M., & Abdelati, M. H. Using the Minimize Distance Method to Find the Best Compromise Solution of Multi-objective Transportation Problem with Case Study.
Albaghdadi, A. M., Baharom, M. B., & bin Sulaiman, S. A. (2021). Parameter design optimization of the crank-rocker engine using the FMINCON function in MATLAB. IOP Conference Series: Materials Science and Engineering,
Almazrouee, A. I., Almeshal, A. M., Almutairi, A. S., Alenezi, M. R., & Alhajeri, S. N. (2020). Long-term forecasting of electrical loads in kuwait using prophet and holt–winters models. Applied Sciences, 10(16), 5627.
Armstrong, J. S. (2001). Selecting forecasting methods. Springer.
Cetin, B., & Yavuz, I. (2021). Comparison of forecast accuracy of Ata and exponential smoothing. Journal of Applied Statistics, 48(13-15), 2580-2590.
Dhali, M. N., Biswas, A., Hasan, M. M., Barman, N., & Ali, M. K. The Forecast of Jute Export in Bangladesh for Optimal Smoothing Constants.
El-Wahab, A., Rabie, M., Abdelati, M. H., Khalil, M. I., & Abdelgawwad, K. (2021). A case study of reducing the total wasted time for the bus movement of Public Transportation Authority in Cairo (CTA). SVU-International Journal of Engineering Sciences and Applications, 2(2), 82-87.
Fahrudin, T. M., Ambariawan, R. P., & Kamisutara, M. (2021). Demand forecasting of the automobile sales using least square, single exponential smoothing and double exponential smoothing. Petra International Journal of Business Studies, 4(2), 122-130.
Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International journal of forecasting, 8(1), 81-98.
Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of forecasting, 4(1), 1-28.
Gardner Jr, E. S. (2006). Exponential smoothing: The state of the art—Part II. International journal of forecasting, 22(4), 637-666.
Gavin, H. P. (2023). The Nelder-Mead Simplex Algorithm in Two Dimensions.
Goodarzi, E., Ziaei, M., Hosseinipour, E. Z., Goodarzi, E., Ziaei, M., & Hosseinipour, E. Z. (2014). Optimization analysis using LINGO and MATLAB. Introduction to Optimization Analysis in Hydrosystem Engineering, 149-193.
Hajej, Z., Rezg, N., & Gharbi, A. (2014). Forecasting and maintenance problem under subcontracting constraint with transportation delay. International Journal of Production Research, 52(22), 6695-6716.
Hanzák, T. (2012). Holt-Winters method with general seasonality. Kybernetika, 48(1), 1-15.
Hodson, T. O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions, 2022, 1-10.
Jianhua, W., Ning, L., Enhong, X., & Xin, Z. (2010). Optimal design for traffic light and simulation based on MATLAB. 2010 International Conference on Mechanic Automation and Control Engineering,
Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609-629.
Latif, M., & Herdiansyah, R. (2022). Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing. Journal of Information System Research (JOSH), 3(2), 137-142.
Lee, Y., Resiga, A., Yi, S., & Wern, C. (2020). The optimization of machining parameters for milling operations by using the Nelder–Mead simplex method. Journal of manufacturing and materials processing, 4(3), 66.
Liu, Y., Zhang, Q., Fan, Z.-P., You, T.-H., & Wang, L.-X. (2018). Maintenance spare parts demand forecasting for automobile 4S shop considering weather data. IEEE Transactions on Fuzzy Systems, 27(5), 943-955.
Maistor, S., Negrea, R., Mocan, M., & Turi, A. (2016). Aspects of forecasting for the European automotive industry. Soft Computing Applications: Proceedings of the 6th International Workshop Soft Computing Applications (SOFA 2014), Volume 2,
Mathai, A. V., Agarwal, A., Angampalli, V., Narayanan, S., & Dhakshayani, E. (2016). Development of new methods for measuring forecast error. International Journal of Logistics Systems and Management, 24(2), 213-225.
Nurhamidah, N., Nusyirwan, N., & Faisol, A. (2020). Forecasting seasonal time series data using the holt-winters exponential smoothing method of additive models. Jurnal Matematika Integratif, 16(2), 151-157.
Pandey, S. (2023). Optimization of PID controller parameters for speed control of DC motor using firefly and fminsearch algorithms. Available at SSRN 4378784.
Plakandaras, V., Papadimitriou, T., & Gogas, P. (2019). Forecasting transportation demand for the US market. Transportation Research Part A: Policy and Practice, 126, 195-214.
Purba, T. C., Notiragayu, N., Fitriani, F., & Azis, D. (2021). The comparison of the effectiveness of the lowest supply lowest cost (LSLC) algorithm and the exponential approach algorithm in transportation problems. Desimal: Jurnal Matematika, 4(2), 185-192.
Rao, C., Zhang, Y., Wen, J., Xiao, X., & Goh, M. (2023). Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. Energy, 263, 125955.
Schmuch, R., Wagner, R., Hörpel, G., Placke, T., & Winter, M. (2018). Performance and cost of materials for lithium-based rechargeable automotive batteries. Nature Energy, 3(4), 267-278.
Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International journal of forecasting, 36(1), 75-85.
Storath, M., & Weinmann, A. (2024). Smoothing splines for discontinuous signals. Journal of Computational and Graphical Statistics, 33(2), 651-664.
Sulandari, W., Suhartono, Subanar, & Rodrigues, P. C. (2021). Exponential smoothing on modeling and forecasting multiple seasonal time series: An overview. Fluctuation and Noise Letters, 20(04), 2130003.
Svetunkov, I., Kourentzes, N., & Ord, J. K. (2022). Complex exponential smoothing. Naval Research Logistics (NRL), 69(8), 1108-1123.
Syntetos, A. A., Babai, Z., Boylan, J. E., Kolassa, S., & Nikolopoulos, K. (2016). Supply chain forecasting: Theory, practice, their gap and the future. European journal of operational research, 252(1), 1-26.
Takeyasu, K., Nagata, K., & Higuchi, Y. (2009). Estimation of Smoothing Constant of Minimum Variance And Its Application to Shipping Data With Trend Removal Method. Industrial Engineering and Management Systems, 8(4), 257-263.
Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An illustrated user guide to the world input-output database: the case of global automotive production. Review of International Economics, 23(3), 575-605.
Utami, Y., Vinsensia, D., & Panggabean, E. (2024). Forecasting Exponential Smoothing untuk Menentukan Jumlah Produksi. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 7(1), 154-160.
Waldschmidt, C., Hasch, J., & Menzel, W. (2021). Automotive radar—From first efforts to future systems. IEEE Journal of Microwaves, 1(1), 135-148.
Wang, Z.-H., Lu, C.-Y., Pu, B., Li, G.-W., & Guo, Z.-J. (2017). Short-term forecast model of vehicles volume based on ARIMA seasonal model and Holt-Winters. ITM Web of Conferences,
Woo, G., Liu, C., Sahoo, D., Kumar, A., & Hoi, S. (2022). Etsformer: Exponential smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381.
Xie, Y., Jin, M., Zou, Z., Xu, G., Feng, D., Liu, W., & Long, D. (2020). Real-time prediction of docker container resource load based on a hybrid model of ARIMA and triple exponential smoothing. IEEE Transactions on Cloud Computing, 10(2), 1386-1401.
Yonar, H., Yonar, A., Tekindal, M. A., & Tekindal, M. (2020). Modeling and Forecasting for the number of cases of the COVID-19 pandemic with the Curve Estimation Models, the Box-Jenkins and Exponential Smoothing Methods. EJMO, 4(2), 160-165.
Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. Royal Society open science, 8(2), 201187.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Mohamed H. Abdelati, Hilal A. Abdelwali
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.