Investigation of Physical and Mechanical Properties and Their Relationship in Senegalia caffra Wood Grown in Northern Ethiopia
DOI:
https://doi.org/10.47540/ijias.v5i1.1767Keywords:
Mechanical Properties, Physical Properties, Sapwood-heartwood ProportionAbstract
This research focused on determining the physical and mechanical properties of Senegalia caffra collected from a Gilgile Beles site in Ethiopia and analyzing how these properties relate to the wood's performance. Fifteen (15) sample trees were selected and felled for the study. Sampling, specimen preparation, and conducting the different tests were achieved following ISO and British standards. In this study, the mean basic density of 594.40 Kg/m3, modulus of elasticity (MoE) of 9,556.79 N/mm2, modulus of rupture (MoR) of 105.69 N/mm2, compression strength parallel to the grain of 53.15 N/mm, impact bending strength of 14,825.00 Nm/m2, radial and tangential hardnesses of 4,958.67 N and 5,324.78 N, respectively, were obtained for the species. Senegalia caffra was superior to the high timber-value tree species of Ethiopia in most of the studied features. The bottom of the tree was highest in density, MoE, MoR, radial, and tangential hardnesses; whereas, the middle height was higher in compression and impact bending strengths. Heartwood was higher in density, MoE, compression strength, and radial and tangential hardnesses than sapwood. Density was moderately correlated with radial hardness (with an R of 0.605 and sig. of 0.000). Generally, higher properties were recorded at the bottom of the tree as well as in the heartwood.
References
Ayobi, E., Kiaei, M., & Bakhshi, R. (2011). Heartwood and sapwood properties of Quercus castaneaefolia in the Iranian forests.
Bal, B. C., & Bektas, I. (2013). The mechanical properties of heartwood and sapwood of flooded gum (Eucalyptus grandis) grown in Karabucak, Turkey.
Bektas, I., Tutus, A., & Gultekin, G. (2020). The Effect of Sapwood and Heartwood Differences on Mechanical Properties of Fast-Growing Tree Species. Wood Industry/Drvna Industrija, 71(3).
Brancheriau, L. (2013). Caractérisation acoustique et ultrasonore des produits bois et composites (Doctoral dissertation, UM2).
British Standard, B.S. 373: (1957). Methods of testing small clear specimens of timber. British Standards Institution, 2 Park Street, London WIA 2BS.
da Silva, C. B. R., dos Santos Junior, J. A., Araújo, A. J. C., Sales, A., Siviero, M. A., Andrade, F. W. C., ... & de Lima Melo, L. E. (2020). Properties of juvenile wood of Schizolobium parahyba var. amazonicum (paricá) under different cropping systems. Agroforestry Systems, 94, 583-595.
Desalegn, G., & Teketay, D. (2012). Commercial timber species in Ethiopia: characteristics and uses: a handbook for forest industries, construction and energy sectors, foresters and other stakeholders.
Duc Viet, D., Ma, T., Inagaki, T., Tu Kim, N., Quynh Chi, N., & Tsuchikawa, S. (2020). Physical and mechanical properties of fast growing polyploid Acacia hybrids (A. auriculiformis x A. mangium) from Vietnam. Forests, 11(7), 717.
FPL, (2010). Wood Handbook, Wood as an Engineering Material. Forest Products Laboratory. United States Department of Agriculture Forest Service. Madison, Wisconsin.
Getahun, Z., Poddar, P., & Sahu, O. (2014). The Influence of physical and mechanical properties on quality of wood produced from Pinus patula tree grown at Arsi Forest. Adv. Res. J. Plant Ani. Sci, 2, 32-41.
Gillah, P. R., Augustino, S., Ishengoma, R. C., & Nkomulwa, H. O. (2008). Physical and strength properties of Azadirachta indica,(a. Juss.) growing in Morogoro, Tanzania. Tanzania Journal of Forestry and Nature Conservation, 77(1), 35-45.
Grubben, G. J. H. (2008). Plant Resources of Tropical Africa (PROTA). Prota.
Hai, P. H., Hannrup, B., Harwood, C., Jansson, G., & Van Ban, D. (2010). Wood stiffness and strength as selection traits for sawn timber in Acacia auriculiformis. Canadian journal of forest research, 40(2), 322-329.
Haygreen, J. G., & Bowyer, J. L. (1996). Forest products and wood science: an introduction.
Hounlonon, M. C., Kouchadé, A. C., & Kounouhéwa, B. B. (2021). Physical and mechanical properties of Acacia auriculiformis A. Cunningham Ex Benth used as timber in Benin. Journal of Materials Science and Surface Engineering, 8(1), 992-1000.
International Fund for Animal Welfare (IFAW) (2024). What is deforestation and how does it impact wildlife? https://www.ifaw.org/international/journal/what-is-deforestation-impact-wildlife.
Kiaei, M., & Farsi, M. (2016). Variación longitudinal en densidad, resistencia a flexión y rigidez de la madera'de seda'persa. Madera y bosques, 22(1), 169-175.
Kim, N. T., Ochiishi, M., Matsumura, J., & Oda, K. (2008). Variation in wood properties of six natural acacia hybrid clones in northern Vietnam. Journal of Wood Science, 54, 436-442.
Laskowska, A., Majewska, K., Kozakiewicz, P., Mamiński, M., & Bryk, G. (2021). Case study of anatomy, physical and mechanical properties of the sapwood and heartwood of random tree Platycladus orientalis (L.) Franco from South-Eastern Poland. Forests, 12(7), 925.
Machado, J. S., Louzada, J. L., Santos, A. J., Nunes, L., Anjos, O., Rodrigues, J., ... & Pereira, H. (2014). Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Materials & Design (1980-2015), 56, 975-980.
Makino, K., Ishiguri, F., Wahyudi, I., Takashima, Y., Iizuka, K., Yokota, S., & Yoshizawa, N. (2012). Wood properties of young Acacia mangium trees planted in Indonesia. Forest Products Journal, 62(2), 102-106.
Mmolotsi, R. M., Chisupo, O., Mojeremane, W., Rampart, M., Kopong, I., & Monekwe, D. (2013). Dimensional relations and physical properties of wood of Acacia saligna, an invasive tree species growing in Botswana.
Mussa, M., Bekele, T., (2019). Within-Stem Variations in Density and Mechanical Properties of Acacia melnoxylon R.Br Grown in Chencha, Southern Ethiopia. Journal of Forestry and Environment, 1(1), 01-15,
Niklas, K. J., & Spatz, H. C. (2010). Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 97(10), 1587-1594.
Nordahlia, A. S., Anwar, U. M. K., Hamdan, H., Zaidon, A., & Omar, M. M. (2014). Mechanical properties of 10-year-old sentang (Azadirachta excelsa) grown from vegetative propagation. Journal of Tropical Forest Science, 240-248.
Pollet, C., Verheyen, C., Hebert, J., & Jourez, B. (2012). Physical and mechanical properties of black locust (Robinia pseudoacacia) wood grown in Belgium. Canadian Journal of Forest Research, 42(5), 831-840.
Santos, A., Simões, R., & Tavares, M. (2013). Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal. Forest Systems, 22(3), 463-470.
Santos, M. E. C. D., Melo, R. R. D., Correia, D., Sousa, J. A. D., Santos, A. M., Silva, A. K. V. D., ... & Stangerlin, D. M. (2023). Variation in the basic density of woods produced in the Brazilian semiarid region subjected to different irrigation regimes. Forests, 14(11), 2168.
Sarogoro, D.N., Emerhi, E.A., (2021). Correlation between density and other mechanical wood properties of Ficus Exasperata (Vahl) along axial plane. Afr. J. Wood Sci. For. 9, 001–007.
Skarvelis, M., & Mantanis, G. I. (2013). Physical and mechanical properties of beech wood harvested in the Greek public forests. Wood research, 58(1), 123-130.
South African National Biodiversity Institute (SANBI) (2024). Senegalia caffra (Thunb.) P.J.H.Hurter &Mabb.
Standard, I.S.O., 3129 (1975). Wood-sampling methods general requirements for physical and mechanical tests. International Organization for Standardization ISO, Geneva, Switzerland. 4p.
Standard, I.S.O., 3130 (1975) Wood—determination of moisture content for physical and mechanical tests. International Organization for Standardization ISO, Geneva, Switzerland.
Standard, I.S.O., 3131 (1975). Wood-Determination of density for physical and mechanical tests. International Organization for Standardization ISO, Geneva, Switzerland. 2pp.
Standard, I.S.O., 3133 (1975). Wood-determination of ultimate strength in static bending. International Organization for Standardization ISO, Geneva, Switzerland. 2p.
Topaloglu, E., & Erisir, E. (2018). Longitudinal variation in selected wood properties of oriental beech and caucasian fir. Maderas. Ciencia y tecnología, 20(3), 403-416.
Tropical Plants Database [TPD], 2024. Ken Fern. tropical.theferns.info. . Accessed on 04 November 2024.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Samson Waktole, Mahadi Mussa, Lamesa Abara, Misganaw Wale, Kassahun Mogninet

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.