Transfer Factor of Heavy Metals from Sediments to Organs of Mud Crabs (Scylla serrata) of Mida-Creek, Kilifi Kenya
DOI:
https://doi.org/10.47540/ijias.v5i1.1812Keywords:
Bioaccumulation, Estuary Sediments, Heavy Metals, Mida Creek, Transfer FactorAbstract
Heavy metal accumulation and transfer from sediments to edible mud crab organs (Scylla serrata) pose major ecological and health risks to consumers. The bioaccumulation of these metals are detrimental if they are extremely toxic. The objectives of this study were to analyze heavy metal concentrations in sediments and crab organs and determine the transfer of heavy metals in Scylla serrata from sediments in Mida Creek, Kilifi. The crab samples were collected by simple random sampling whereas sediment samples were collected by purposive sampling. The transfer factor of heavy metals from sediments to the organs of edible mud crabs (Scylla serrata) was evaluated in both the wet and dry seasons. The measurements and examinations of heavy metals, samples of crab organs, and sediments were obtained from three sampled sites. The concentration of metals in the samples was determined using an X-ray fluorescence (XRF) spectrometer. The results showed that the majority of the components are accumulated by the crabs from sediments. The order in which the metal transfer factor to crabs from station 1 sediments increased was Fe > Zn > Ni > Cu > Cd > Hg. In station 2, the transfer factor increased in the following order: Fe > Zn> Cu>Ni>Cd> Hg, while in station 3, it increased in the following order: Fe > Ni> Zn>Hg>Cd>Cu. The study concluded that mud crabs in Mida Creek actively absorb most of the elements from the sediments. The study recommends a routine monitoring of heavy-metal levels in other crustacean marine biota, and fish is necessary.
References
Addo-Bediako, A., Nukeri, S., & Kekana, M. (2021). Heavy metal and metalloid contamination in the sediments of the Spekboom River, South Africa. Applied Water Science, 11(7), 133.
Adeyemi, M. O., Olusola, J. A., Akpobasah, O., Adidi, N. E., & Shelle, R. O. D. (2019). Assessment of heavy metals pollution in sediments from Ologe Lagoon, Agbara, Lagos, Nigeria. Journal of Geoscience and Environment Protection, 7(7), 61–73.
Ajsuvakova, O. P., Tinkov, A. A., Aschner, M., Rocha, J. B., Michalke, B., Skalnaya, M. G., Skalny, A. V., Butnariu, M., Dadar, M., & Sarac, I. (2020). Sulfhydryl groups as targets of mercury toxicity. Coordination Chemistry Reviews, 417, 213343.
Alemayehu, F. (2015). Impact of Land Use Change on Shoreline Erosion and Mangrove Dynamics in Watamu Mida Creek, Kenya.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(1), 6730305.
Al-Sulaiti, M. M., Al-Ghouti, M. A., Ramadan, G. A., & Soubra, L. (2023). Health risk assessment of methyl mercury from fish consumption in a sample of adult Qatari residents. Environmental Monitoring and Assessment, 195(5), 617.
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Frontiers in Pharmacology, 12, 643972.
Banaee, M., Zeidi, A., Mikušková, N., & Faggio, C. (2024). Assessing metal toxicity on crustaceans in aquatic ecosystems: A comprehensive review. Biological Trace Element Research, 1–19.
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9).
Brocza, F. M., Rafaj, P., Sander, R., Wagner, F., & Jones, J. M. (2024). Global scenarios of anthropogenic mercury emissions. Atmospheric Chemistry and Physics, 24(12), 7385–7404.
Carrasco, L., Benejam, L., Benito, J., Bayona, J. M., & Díez, S. (2011). Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir. Environment International, 37(7), 1213–1218.
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects—A brief summary. Molecules, 28(18), 6620.
Costa, M. I., Sarmento-Ribeiro, A. B., & Gonçalves, A. C. (2023). Zinc: From biological functions to therapeutic potential. International Journal of Molecular Sciences, 24(5), 4822.
Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., & Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environmental Health Insights, 17, 11786302231201259.
Dietz, R., Wilson, S., Loseto, L. L., Dommergue, A., Xie, Z., Sonne, C., & Chételat, J. (2022). Special issue on the AMAP 2021 assessment of mercury in the Arctic. Science of the Total Environment, 843, 157020.
El-Sharkawy, M., Alotaibi, M. O., Li, J., Du, D., & Mahmoud, E. (2025). Heavy Metal Pollution in Coastal Environments: Ecological Implications and Management Strategies: A Review. Sustainability, 17(2), 701.
Gezahegn, T. F., Ambaye, A. D., Mekoyete, T. M., Malefane, M. E., Oyedotun, K. O., & Mokrani, T. (2024a). Breakthroughs in nanostructured-based chemical sensors for the detection of toxic metals. Talanta Open, 100354.
Gezahegn, T. F., Ambaye, A. D., Mekoyete, T. M., Malefane, M. E., Oyedotun, K. O., & Mokrani, T. (2024b). Breakthroughs in nanostructured-based chemical sensors for the detection of toxic metals. Talanta Open, 100354.
Gray, P. J., & Cunningham, W. (2019). Inductively coupled plasma collision cell quadrupole mass spectrometric determination of extractible arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave-assisted digestion: Results from an FDA interlaboratory study. Journal of AOAC International, 102(2), 590–604.
Halabowski, D., & Lewin, I. (2021). Triggers for the impoverishment of the macroinvertebrate communities in the human-impacted rivers of two Central European ecoregions. Water, Air, & Soil Pollution, 232(2), 55.
Hembrom, S., Singh, B., Gupta, S. K., & Nema, A. K. (2020). A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. Contemporary Environmental Issues and Challenges in Era of Climate Change, 33–63.
Idoine, N., Raycraft, E., Shaw, R., Hobbs, S., Deady, E., Everett, P., Evans, E., & Mills, A. (2022). World mineral production 2016-2020.
Ivanina, A., Eilers, S., Kurochkin, I., Chung, J., Techa, S., Piontkivska, H., Sokolov, E., & Sokolova, I. (2010). Effects of cadmium exposure and intermittent anoxia on nitric oxide metabolism in eastern oysters, Crassostrea virginica. Journal of Experimental Biology, 213(3), 433–444.
Jafarabadi, A. R., Bakhtiyari, A. R., Toosi, A. S., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185, 1090–1111.
Kalisińska, E., Łanocha-Arendarczyk, N., & Kosik-Bogacka, D. I. (2019). Mercury, Hg. Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments: An Ecotoxicological Assessment of the Northern Hemisphere, 593–653.
Kebbekus, B. B. (2003). Preparation of samples for metals analysis. Sample Preparation Techniques in Analytical Chemistry, 162, 227–270.
Khan Mohammad Beigi, P., Maverakis, E., Beigi, P. K. M., & Maverakis, E. (2015). Role of zinc in different body systems. Acrodermatitis Enteropathica: A Clinician’s Guide, 61–75.
Leal, M. F. C., Catarino, R. I., Pimenta, A. M., & Souto, M. R. S. (2023). The influence of the biometals Cu, Fe, and Zn and the toxic metals Cd and Pb on human health and disease. Trace Elements and Electrolytes, 40(1), 1.
Lee, A. C., Idrus, F. A., & Aziz, F. (2021). Cadmium and Lead Concentrations in Water, Sediment, Fish and Prawn as Indicators of Ecological and Human Health Risk in Santubong Estuary, Malaysia. Jordan Journal of Biological Sciences, 14(2).
Newton, A., Icely, J., Cristina, S., Perillo, G. M., Turner, R. E., Ashan, D., Cragg, S., Luo, Y., Tu, C., & Li, Y. (2020). Anthropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution, 8, 144.
Noman, M. A., Feng, W., Zhu, G., Hossain, M. B., Chen, Y., Zhang, H., & Sun, J. (2022). Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Scientific Reports, 12(1), 4634.
Okorondu, J. N., Owhoeke, E., Diagi, B. E., Nwachukwu, J. I., & Izunobi, L. C. (2021). Assessment of heavy metal contamination in sea bed sediment of the bight of bonny, Southern Atlantic coast of Nigeria using index model analysis. Journal of Geoscience and Environment Protection, 9(12), 286–298.
Owuor, M. A., Icely, J., & Newton, A. (2019). Community perceptions of the status and threats facing mangroves of Mida Creek, Kenya: Implications for community based management. Ocean & Coastal Management, 175, 172–179.
Ramos, R. J., & Leite, G. R. (2022). Disposition of trace elements in the mangrove ecosystem and their effects on Ucides cordatus (Linnaeus, 1763)(Crustacea, Decapoda). Biometals, 35(5), 853–873.
Rinehart, S., Dybiec, J., Mortazavi, B., & Cherry, J. (2023). Stratified vertical sediment profiles increase burrowing crab effects on salt marsh edaphic conditions. Ecosphere, 14(3), e4431.
Rodrigues, A. P. de C., Pereira, M. M., Campos, A., da Silva Quaresma, T. L., Pova, R., Vieira, T. C., Diaz, R. A., Moreira, M., Araripe, D., & Monte, C. do N. (2023). Bioavailability Assessment of Metals from the Coastal Sediments of Tropical Estuaries Based on Acid-Volatile Sulfide and Simultaneously Extracted Metals. Coasts, 3(4), 313–327.
Siddiqui, A. S., & Saher, N. U. (2021). Interferences of trace metals between sediment and Dotillid crab (Ilyoplax frater) from three tidal creeks, Karachi, Pakistan. SN Applied Sciences, 3(1), 109.
Singh, V., Ahmed, G., Vedika, S., Kumar, P., Chaturvedi, S. K., Rai, S. N., Vamanu, E., & Kumar, A. (2024). Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Scientific Reports, 14(1), 7595.
Soegianto, A., Wahyuni, H. I., Yulianto, B., & Abd Manaf, L. (2022). Health risk assessment of metals in mud crab (Scylla serrata) from the East Java Estuaries of Indonesia. Environmental Toxicology and Pharmacology, 90, 103810.
Suhendrayatna, S., Arahman, N., Sipahutar, L. W., Rinidar, R., & Elvitriana, E. (2019). Toxicity and organ distribution of mercury in freshwater fish (Oreochromis niloticus) after exposure to water contaminated mercury (HgII). Toxics, 7(4), 58.
Sundseth, K., Pacyna, J. M., Pacyna, E. G., Pirrone, N., & Thorne, R. J. (2017). Global sources and pathways of mercury in the context of human health. International Journal of Environmental Research and Public Health, 14(1), 105.
Venkateswarlu, V., & Venkatrayulu, C. (2020). Bioaccumulation of heavy metals in edible marine fish from coastal areas of Nellore, Andhra Pradesh, India. GSC Biological and Pharmaceutical Sciences, 10(1), 018–024.
Vilhena, M. S., Costa, M. L., & Berredo, J. F. (2013). Accumulation and transfer of Hg, As, Se, and other metals in the sediment-vegetation-crab-human food chain in the coastal zone of the northern Brazilian state of Pará (Amazonia). Environmental Geochemistry and Health, 35, 477–494.
Vince Cruz, C. C. E., Ramos, G., & Ablan-Lagman, M. C. (2015). Heavy metal levels in mud crabs (Scylla spp.) from East Bataan Coast. Environmental Science and Pollution Research, 22, 6359–6363.
Waqas, W., Yuan, Y., Ali, S., Zhang, M., Shafiq, M., Ali, W., Chen, Y., Xiang, Z., Chen, R., & Ikhwanuddin, M. (2024). Toxic effects of heavy metals on crustaceans and associated health risks in humans: A review. Environmental Chemistry Letters, 22(3), 1391–1411.
Wechuli, S., Munga, D., & Magwa, R. (2023). Determination of Some Selected Heavy Metals in Effluents from Lubricants Manufacturing and Associated Contamination of Oysters (Crassostrea cucullata) and Soil near Discharge Points in Mombasa, Kenya. Journal of Chemistry, 2(1), 14–24.
YH, E. (2021). Effect of bioaccumulation and biosedimentation of some heavy metals on histological features in the cichlid fish, Tilapia zillii inhabiting Lake Qarun, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 25(3), 695–711.
Yount, R. (2021). An Assessment of Terrestrial Decapoda Diversity Across Three Ecological Zones in Mida Creek, Kenya.
Zhang, S., Fu, K., Gao, S., Liang, B., Lu, J., & Fu, G. (2023). Bioaccumulation of heavy metals in the water, sediment, and organisms from the sea ranching areas of Haizhou Bay in China. Water, 15(12), 2218.
Zhuzzhassarova, G., Azarbayjani, F., & Zamaratskaia, G. (2024). Fish and Seafood Safety: Human Exposure to Toxic Metals from the Aquatic Environment and Fish in Central Asia. International Journal of Molecular Sciences, 25(3), 1590.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Emily Akinyi Ochieng, Fredrick Kayusi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.