Investigation of the Chemical Compounds, Antioxidant Effect and Therapeutic Properties of Crocus sativus L. (Iridaceae): A Review

Authors

  • Huda J. Mhamad Department of Food Science and Quality Control, Sulaimani Polytechnic University, Halabja Technical Collage, Iraq
  • Zirak M. R. Palani Department of Animal Production, College of Agriculture, Kirkuk University, Iraq
  • Adel AL-Zubaidy Department of Food Science and Quality Control, Sulaimani Polytechnic University, Halabja Technical Collage, Iraq

DOI:

https://doi.org/10.47540/ijias.v5i1.1829

Keywords:

Antioxidant, Crocin, Medicines, Saffron

Abstract

Saffron Crocus sativus L. (family Iridaceae) is produced in autumn also, is an expensive spice development in Mediterranean climates It takes between 110,000 and 200,000 flowers to harvest one kilogram of stigmas. Stigmas of Croci Sativa (Croci stigmas) is a pharmaceutical primary source, the important factors that impact the quality are soil and climate more than the quality of saffron is determined by secondary metabolites, including as a culinary addition due to their rich perfume, vivid color, and bitter flavor. However, it is more susceptible to forgery for commercial gain, causing danger to public health. The more crucial criterion for identifying crocin concentration is the property of saffron. A new source of antioxidants is the usual medication for depression. Crocus sativus, the central nervous system, depression, dopamine, the dopaminergic and serotonergic systems, picrocrocin, phytotherapy, neurotransmitters, safranal, saffron, serotonin, and physiologically active chemicals are all associated with antidepressant action. It has also been consumed in conventional medicine to handle a range of illnesses, including inflammatory and neurological problems. Saffron includes critical minerals and vitamins. Saffron's anti-aging and anti-oxidant properties make it popular in numerous regions around the globe. Furthermore, the capacity of crocetin, saffron, and crocin to lower the deleterious drug modulator effects of chemotherapeutic components was revealed. Properties saffron and its extract were found to be low- or non-toxic. The aim of this study for show a more therapeutic effect also how to use it to treat disease and produce saffron for medicine.

References

A, Ayari., M. M, Pier. Denis, G. A. Landry, and L. Lapointe. (2022a). Cultivation of Saffron (Crocus Sativus L.) in Cold Climates. Canadian Journal of Plant Science, 102 (3).

Abd Rahim, I. N., N. A. M. Kasim, E. Omar, S. A. Muid, and H. Nawawi. (2024). Safety Evaluation of Saffron Extracts in Early and Established Atherosclerotic New Zealand White Rabbits. PloS One, 19 (1), e0295212.

Abedimanesh, N., S. Zahra B, S. Abedimanesh, B. Motlagh, A. Separham, and Alireza Ostadrahimi. (2017). Saffron and Crocin Improved Appetite, Dietary Intakes and Body Composition in Patients with Coronary Artery Disease. Journal of Cardiovascular and Thoracic Research, 9 (4), 200–208.

Aghaei, Z., S. M. Jafari, Danial Dehnad, Mohammad Ghorbani, and Khodayar Hemmati. (2018). Refractance-Window as an Innovative Approach for the Drying of Saffron Petals and Stigma. Journal of Food Process Engineering, 41 (7), 1–9.

Amine, A., Mohamed, M-P. Denis, G-A. Landry and Line, L. (2022b). Cultivation of Saffron (Crocus Sativus L.) in Cold Climates. Canadian Journal of Plant Science, 102 (3).

Anaeigoudari, F. A., Anaeigoudari, and A. Kheirkhah-Vakilabad. (2023). A Review of Therapeutic Impacts of Saffron (Crocus Sativus L.) and Its Constituents. Physiological Reports, 11 (15), 1–14.

Arjmand, M. H., M. Hashemzehi, A. Soleimani, F. Asgharzadeh, A. Avan, S. Mehraban, M. Fakhraei. (2021). Therapeutic Potential of Active Components of Saffron in Post-Surgical Adhesion Band Formation. Journal of Traditional and Complementary Medicine, 11 (4), 328–35.

Asdaq, S., M. Basheeruddin, Basheerahmed Abdulaziz Mannasaheb, Raha Orfali, Ibrahim Ahmed Shaikh, Ahmed Alshehri, Adel Alghamdi, Meshal Mohammed Alrashdi, Moneer E. Almadani, and Faisal Mohammad Ali Abdalla. (2024). Antidiabetic and Antioxidant Potential of Crocin in High-Fat Diet plus Streptozotocin-Induced Type-2 Diabetic Rats. International Journal of Immunopathology and Pharmacology, 38, 1–12.

Asil, H., (2023). Effect of Biostimulants on Leaf and Stigma Properties of Saffron (Crocus Sativus L.). Pakistan Journal of Botany, 55 (4): 1287–93.

Azgomi, R. N. D., A. Karimi and A. M. Jazani. (2024). The Favorable Impacts of Cardamom on Related Complications of Diabetes: A Comprehensive Literature Systematic Review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 102947.

Bakshi, R. A., N. S. Sodhi, I. A. Wani, Z. S. Khan, B. Dhillon, and A. Gani. (2022). Bioactive Constituents of Saffron Plant: Extraction, Encapsulation and Their Food and Pharmaceutical Applications. Applied Food Research, 2 (1), 100076.

Bhagat, N., and J. Vakhlu. (2024). Effects of Biocontrol Bacillus Sp. Strain D5 on the Pathogenic Fusarium Oxysporum R1 at the Microscopic and Molecular Level in Crocus Sativus L. (Saffron) Corm. FEMS Microbes, 5 (November 2023), 1–16.

Bostan, H. B., S. Mehri, and H. Hosseinzadeh. (2017). Toxicology Effects of Saffron and Its Constituents: A Review. Iranian Journal of Basic Medical Sciences 20, (2), 110–21.

Candar, A., H. Demirci, A. K. Baran, and Y. Akpınar. (2018). The Association between Quality of Life and Complementary and Alternative Medicine Use in Patients with Diabetes Mellitus. Complementary Therapies in Clinical Practice, 31, 1–6.

Cerdá-Bernad, D., and M J. Frutos. (2023). Saffron Floral By-Products as Novel Sustainable Vegan Ingredients for the Functional and Nutritional Improvement of Traditional Wheat and Spelt Breads. Foods, 12 (12).

Cicco, N. (2022). Crocus Sativus (L.) Grown in Pots with High Volume Capacity: From a Case of Study to a Patent. Agriculture (Switzerland), 12 (11).

Ebrahimi, S, M H Fathi Nasri, and S H Farhangfar. (2024). Dietary Supplementation of Saffron Petal Elicits Positive Effects on Performance, Antioxidant Status, and Health of Dairy Goats. Small Ruminant Research, 231, 107179.

Gallo, M., B. Farda, R. Djebaili, E. Sabbi, C. Ercole, L. Pace, and M. Pellegrini. (2024). Microbial Communities Investigation and Biocontrol Activity in Saffron Cultures, 16433.

Ganaie, D. B., and Y. Singh. (2019). Saffron in Jammu & Kashmir. International Journal of Research in Geography, 5 (2).

Gao, D., X. Ji, Q. Yuan, W. Pei, X. Zhang, F. Li, Q. Han, and S. Zhang. (2023). Effects of Total Daily Light Integral from Blue and Broad-Band Red LEDs on Flowering of Saffron (Crocus Sativus L.). Scientific Reports, 13 (1), 1–12.

Hosseinzadeh, H, and R Montahaei. (2007). Protective Effect of Nigella Sativa L. Extracts and Thymoquinone, Its Active Constituent, on Renal Ischemia-Reperfusion-Induced Oxidative Damage in Rats. Pharmacologyonline, 1 (3), 176–89.

Javed, S., S. Hanif, A. Aftab, Z. Yousaf, and M. Moga. (2023). Saffron. In Essentials of Medicinal and Aromatic Crops, 1091–1113. Springer.

Kordzadeh, A., Maryam M. and A Ramazani SA. (2024). Inhibitory Effect of Saffron Components on HIAPP Fibrils Formation; a Molecular Dynamics Simulation Study. Computational and Theoretical Chemistry, 114481.

Kour, K., D. Gupta, J. Rashid, K. Gupta, J.Kim, Keejun Han, and Khalid Mohiuddin. (2023). Smart Framework for Quality Check and Determination of Adulterants in Saffron Using Sensors and AquaCrop. Agriculture (Switzerland), 13 (4).

Lorenzo, Cándida, ., H. Valouzi, N. Moratalla-López, H. Bahlolzada, R. Sánchez-Gómez, Akbar Dizadji, and G. L. Alonso. (2023). Saffron Stigmas Apocarotenoid Contents from Saffron Latent Virus (SaLV)-Infected Plants with Different Origins and Dehydration Temperatures. Horticulturae, 9 (8).

Magotra, S., N. Bhagat, S. Ambardar, T. Ali, Barbara R. Hurek, T. Hurek, P. K. Verma, and J. Vakhlu. (2021). Field Evaluation of PGP Bacillus Sp. Strain D5 Native to Crocus Sativus, in Traditional and Non Traditional Areas, and Mining of PGP Genes from Its Genome. Scientific Reports, 11 (1), 1–16.

Malavi, D., Amin, N. P. Alighaleh, S.Einafshar, K. Raes, and S.V. Haute. (2024). Detection of Saffron Adulteration with Crocus Sativus Style Using NIR-Hyperspectral Imaging and Chemometrics. Food Control, 157, 110189.

Mashmoul, M., A. Azlan, N. Mohtarrudin, B. N. M. Yusof, H. K.’ai, H E. Khoo, M. Farzadnia, and M T. Boroushaki. (2016). Protective Effects of Saffron Extract and Crocin Supplementation on Fatty Liver Tissue of High-Fat Diet-Induced Obese Rats. BMC Complementary and Alternative Medicine, 16 (1), 1–7.

Masoomi, S., H. Sharifi, and B.Hemmateenejad. (2024). An Optical-Nose Device Based on Fluorescent Nanomaterials Sensor Array for Authentication of Saffron. Sensors and Actuators B: Chemical, 135365.

Matraszek-Gawron, R., M. Chwil, K.Terlecki, and M. M. Skoczylas. (2023). Current Knowledge of the Antidepressant Activity of Chemical Compounds from Crocus Sativus L. Pharmaceuticals, 16 (1).

Merzougui, S El., I. Boudadi, K. Lachguer, D. G Beleski, K. Lagram, M. Lachheb, M.Ben. (2024). Propagation of Saffron (Crocus Sativus L.) Using Cross-Cuttings under a Controlled Environment, 54–63.

Mirhadi, E., H. Nassirli, and B. Malaekeh-Nikouei. (2020). An Updated Review on Therapeutic Effects of Nanoparticle-Based Formulations of Saffron Components (Safranal, Crocin, and Crocetin). Journal of Pharmaceutical Investigation, 50 (1), 47–58.

Mohd, Hatta F.A., R. Othman, A.Q.A. Mat, Hassan N. Mohd, R. Ramya, Sulaiman W.S. Wan, Latiff N.H. Mohd, and K. M.I.A. Mohd. (2023). Carotenoids Composition, Antioxidant and Antimicrobial Capacities of Crocus Sativus L. Stigma. Food Research, 7 (4), 337–43.

Mzabri, I., M. Addi, and A. Berrichi. (2019). Traditional and Modern Uses of Saffron (Crocus Sativus). Cosmetics, 6 (4), 1–11.

Oubella, K., A. Benkerroum, S. Zini, H. Mouhanni, S. E. Haddou, and A. Bendou. (2023). The Micronutrient Composition of Crocus Sativus L. and Its Correlations Based on Statistical Analysis. International Journal of Advanced Research, 11 (01).

Poudel, P., L. Whittinghill, H. Kobayashi, and S. Lucas. (2023). Evaluating the Effects of Bacillus Subtilis Treatment and Planting Depth on Saffron (Crocus Sativus L.) Production in a Green Roof System. HortScience, 58 (10), 1267–74.

Rajabalizadeh, R., M. G. Rahbardar, B. M.Razavi, and H. Hosseinzadeh. (2024). Renoprotective Effects of Crocin against Colistin-Induced Nephrotoxicity in a Rat Model. Iranian Journal of Basic Medical Sciences, 27 (2): 151–56.

Ramli, F. Najwa, A. A. B. Sajak, F. Abas, Z. A. .Daud, and A. Azlan. (2020). Effect of Saffron Extract and Crocin in Serum Metabolites of Induced Obesity Rats. BioMed Research International 2020.

Ruiz P., Á. Raúl, M. d. C. C. Ruiz, and H. S. M. Sánchez-Mateos. (2023). Regional Identity and Intangible Heritage Related to Saffron Cultivation in Castilla-La Mancha (Spain). Heritage, 6 (3), 2453–72.

Salem, M., M. Shaheen, A.Tabbara and J. Borjac. (2022). Saffron Extract and Crocin Exert Anti-Inflammatory and Anti-Oxidative Effects in a Repetitive Mild Traumatic Brain Injury Mouse Model. Scientific Reports, 12 (1), 1–14.

Siddiqui, S., A. A A. Redha, E. R. Snoeck, S. Singh, J Simal-Gandara, S.A. Ibrahim, and S.M. Jafari. (2022). Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules, 27 (7).

Spence, C. (2023a). Saffron: The Colourful Spice. International Journal of Gastronomy and Food Science, 34 (October), 100821.

Spence, C. (2023b). Saffron: The Colourful Spice. International Journal of Gastronomy and Food Science, 34 (October), 100821.

Stelluti, S., M. Caser, S. Demasi, E. R. Herrero, I. García-González, E. Lumini, V.Bianciotto, and V. Scariot. (2023). Beneficial Microorganisms: A Sustainable Horticultural Solution to Improve the Quality of Saffron in Hydroponics. Scientia Horticulturae 319 (January).

Tsiogkas, S. G., Maria, G. Grammatikopoulou, K. Gkiouras, E. Zafiriou, I. Papadopoulos, C. Liaskos, E. Dardiotis, L. I. Sakkas, and D. P. Bogdanos. (2021). Effect of Crocus Sativus (Saffron) Intake on Top of Standard Treatment, on Disease Outcomes and Comorbidities in Patients with Rheumatic Diseases: Synthesis without Meta-Analysis (SWiM) and Level of Adherence to the CONSORT Statement for Randomized Contro. Nutrients, 13 (12).

Yang, W., X. Qiu, Q. Wu, F. Chang, T. Zhou, M. Zhou, and J. Pei. (2023). Active Constituents of Saffron (Crocus Sativus L.) and Their Prospects in Treating Neurodegenerative Diseases (Review). Experimental and Therapeutic Medicine, 25 (5), 1–14.

Zhu, J., Y. Zhang, L.Zhou, and L. Yang. (2022). Growth and Flowering of Saffron (Crocus Sativus L.) with Three Corm Weights under Different Led Light Qualities. Scientia Horticulturae, (303), 111202.

Published

2025-02-28

How to Cite

Mhamad, H. J., Palani, Z. M. R., & AL-Zubaidy, A. . (2025). Investigation of the Chemical Compounds, Antioxidant Effect and Therapeutic Properties of Crocus sativus L. (Iridaceae): A Review. Indonesian Journal of Innovation and Applied Sciences (IJIAS), 5(1), 89-98. https://doi.org/10.47540/ijias.v5i1.1829