Managing Diabetes Using Machine Learning and Digital Twins
DOI:
https://doi.org/10.47540/ijias.v5i2.1981Keywords:
Artificial Intelligence, Diabetes Prediction, Digital Twins, Machine LearningAbstract
Diabetes is a major public health problem worldwide, and early diagnosis will remain pivotal for intervention and management. This Systematic Literature Review (SLR), therefore, attempts to explore the prospects of integrating Machine Learning (ML) and Digital Twins (DT) to enable diabetes treatment through prediction and patient-specific modeling. This SLR contributes to the body of literature by examining how ML and DTs are being applied in diabetes treatment, identifying the opportunities and challenges that exist, and determining which algorithms are most commonly used. In contrast to SLRs that have been reviewed previously, this study considers Digital Twin-based technological perspectives, along with algorithmic evaluations of ML models, to provide an overall view of the potential for combined use in diabetes care. Following PRISMA guidelines, 11 relevant studies were selected from major academic databases. The study identified Random Forests, Gradient-Boosted Decision Trees, K-Nearest Neighbors, Time Series and Structured Analysis, Regression-based algorithms, and Artificial Neural Networks as machine learning algorithms commonly used to predict diabetes risk. The integration of ML and DT for diabetes management enables the personalization of patient management through virtual representations, real-time monitoring of an individual's glucose levels, simulation of disease progression, and prediction of subsequent treatment steps for proactive and immediate decision-making. Through this collaboration, simulations of various situations are performed, and the interventions are optimized to correspond with unique human physiological profiles for better patient outcomes. Based on the results, policymakers must balance data quality and patient privacy.
References
Abdi, A., Jalilian, M., Sarbarzeh, P. A., & Vlaisavljevic, Z. (2020). Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Research and Clinical Practice, 166, 108347.
Agrawal, A., Fischer, M., & Singh, V. (2022). Digital Twin: From Concept to Practice. Journal of Management in Engineering, 38(3).
Alkhatib, A., Tsang, C., Tiss, A., Bahorun, T., Arefanian, H., Barake, R., Khadir, A., & Tuomilehto, J. (2017). Functional foods and lifestyle approaches for diabetes prevention and management. In Nutrients (Vol. 9, Issue 12). MDPI AG.
Austin, A. M., Ramkumar, N., Gladders, B., Barnes, J. A., Eid, M. A., Moore, K. O., Feinberg, M. W., Creager, M. A., Bonaca, M., & Goodney, P. P. (2022). Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling. BMC Medical Research Methodology, 22(1), 300.
Cappon, G., & Facchinetti, A. (2024). Digital Twins in Type 1 Diabetes: A Systematic Review. In Journal of Diabetes Science and Technology. SAGE Publications Inc.
Cellina, M., Cè, M., Alì, M., Irmici, G., Ibba, S., Caloro, E., Fazzini, D., Oliva, G., & Papa, S. (2023). Digital Twins: The New Frontier for Personalized Medicine? Applied Sciences, 13(13), 7940.
Chu, Y., Li, S., Tang, J., & Wu, H. (2023). The potential of the Medical Digital Twin in diabetes management: a review. In Frontiers in Medicine (Vol. 10). Frontiers Media SA.
Frank, M., Drikakis, D., & Charissis, V. (2020). Machine-learning methods for computational science and engineering. In Computation (Vol. 8, Issue 1). MDPI Multidisciplinary Digital Publishing Institute.
Fuyana, C., Ndlovu, B., Dube, S., Maguraushe, K., & Malungana, L. (2025). Optimizing HIV Care Through Machine Learning-Assisted Prediction and Personalized Treatment BT - Evolution in Computational Intelligence. Springer Nature Singapore.
Hasib, S., Faruqui, A., Alaeddini, A., Du, Y., Li, S., Sharma, K., & Wang, J. (2024). Nurse-in-the-Loop Artificial Intelligence for Precision Management of Type 2 Diabetes in a Clinical Trial Utilizing Transfer-Learned Predictive Digital Twin.
Joshi, S., Shamanna, P., Dharmalingam, M., Vadavi, A., Keshavamurthy, A., Shah, L., & Mechanick, J. I. (2023). Digital Twin-Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. Endocrine Practice, 29(12), 960–970.
Kulkarni, C., Quraishi, A., Raparthi, M., Shabaz, M., Khan, M. A., Varma, R. A., Keshta, I., Soni, M., & Byeon, H. (2024). Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Medical Informatics and Decision Making, 24(1).
Lederer, J. (2022). Linear Regression (pp. 37–79).
Li, H., Tian, S., Chen, T., Cui, Z., Shi, N., Zhong, X., Qiu, K., Zhang, J., Zeng, T., Chen, L., & Zheng, J. (2020). Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID‐19. Diabetes, Obesity and Metabolism, 22(10), 1897–1906.
Maguraushe, K., & Ndlovu, B. M. (2024). The use of smart technologies for enhancing palliative care: A systematic review. Digital Health, 10, 20552076241271836.
Maguraushe, K., Ndayizigamiye, P. (2024). Towards a Smart Healthcare System for Non-Communicable Diseases (NCDs) Management: A Bibliometric Analysis. In: Masinde, M., Möbs, S., Bagula, A. (eds) Emerging Technologies for Developing Countries. AFRICATEK 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 520. Springer, Cham.
Meijer, C., Uh, H. W., & el Bouhaddani, S. (2023). Digital Twins in Healthcare: Methodological Challenges and Opportunities. In Journal of Personalized Medicine (Vol. 13, Issue 10). Multidisciplinary Digital Publishing Institute (MDPI).
Mosquera-Lopez, C., & Jacobs, P. G. (2024). Digital twins and artificial intelligence in metabolic disease research. In Trends in Endocrinology and Metabolism (Vol. 35, Issue 6, pp. 549–557). Elsevier Inc.
Moyo, N., Moyo, S., & Mutunhu, B. (2022). Mask-Up: A Face Mask Alert App Using Machine Learning. 2022 IST-Africa Conference, IST-Africa 2022, 1–8.
Mpofu, L., Ndlovu, B., Dube, S., Muduva, M., Jacqueline, F., & Maguraushe, K. (2024, April 23). Predictive Model for Hospital Readmission of Diabetic Patients. Proceedings of the International Conference on Industrial Engineering and Operations Management.
Mtshali, N.C.W., Ndayizigamiye, P., Govender, I., Maguraushe, K. (2024). Fostering Youth Wellbeing Through mHealth Apps: Embracing Physical Activity for a Healthier Lifestyle. In: Sharma, S.K., Dwivedi, Y.K., Metri, B., Lal, B., Elbanna, A. (eds) Transfer, Diffusion and Adoption of Next-Generation Digital Technologies. TDIT 2023. IFIP Advances in Information and Communication Technology, vol 698. Springer, Cham.
Murere, I., Ndlovu, B., Dube, S., Muduva, M., & Jacqueline Kiwa, F. (2024, July 16). Comparative Analysis of Machine Learning Techniques for Predicting Diabetes. Proceedings of the International Conference on Industrial Engineering and Operations Management.
Mutunhu, B., Chipangura, B., & Singh, S. (2024a). An Exploration of Opportunities for Quantified-Self Technology in Diabetes Self-Care: A Systematic Literature Review. J Health Inform Afr, 11(2), 17–30.
Mutunhu, B., Chipangura, B., & Singh, S. (2024b). Towards a quantified-self technology conceptual framework for monitoring diabetes. Suid-Afrikaanse Tydskrif Vir Natuurwetenskap En Tegnologie, 43(1), 69–84.
Mutunhu, B., Chipangura, B., & Twinomurinzi, H. (2022). Internet of Things in the Monitoring of Diabetes. International Journal of Health Systems and Translational Medicine, 2(1), 1–20.
Mutunhu, B., Chipangura, B., & Twinomurinzi, H. (2023). A Systematized Literature Review: Internet of Things (IoT) in the Remote Monitoring of Diabetes (pp. 649–660).
Ndlovu, B. M., Chipangura, B., & Singh, S. (2024). Factors Influencing Quantified SelfTechnology Adoption in Monitoring Diabetes. In X.-S. Yang, S. Sherratt, N. Dey, & A. Joshi (Eds.), Proceedings of Ninth International Congress on Information and Communication Technology (pp. 469–479). Springer Nature Singapore.
Ndhlovu, P., Maguraushe, K., Ndayizigamiye, P. and Idemudia, E. C. (2023). The effect of smartwatch features on patient-centred healthcare. (2023). ACIS 2023 Proceedings. 19.
Ogundokun, R. O., Lukman, A. F., Kibria, G. B. M., Awotunde, J. B., & Aladeitan, B. B. (2020). Predictive modelling of COVID-19 confirmed cases in Nigeria. Infectious Disease Modelling, 5, 543–548.
Paramesh Shamanna, Banshi Saboo, Suresh Damodharan, Jahangir Mohammed, Maluk Mohamed, Terrence Poon, Nathan Kleinman, & Mohamed Thajudeen. (2020). Reducing HbA1c in Type 2 Diabetes Using Digital Twin Technology-Enabled Precision Nutrition: A Retrospective Analysis. In Brill's Studies in Intellectual History: Vol. 270/21 (pp. 1–467). Brill Academic Publishers.
Rane, N. L., Paramesha, M., Choudhary, S. P., & Rane, J. (2024). Partners Universal International Innovation Journal (PUIIJ) Machine Learning and Deep Learning for Big Data Analytics: A Review of Methods and Applications.
Sarani Rad, F., Hendawi, R., Yang, X., & Li, J. (2024). Personalized Diabetes Management with Digital Twins: A Patient-Centric Knowledge Graph Approach. Journal of Personalized Medicine, 14(4).
Shamanna, P., Dharmalingam, M., Sahay, R., Mohammed, J., Mohamed, M., Poon, T., Kleinman, N., & Thajudeen, M. (2021). Retrospective study of glycemic variability, BMI, and blood pressure in diabetes patients in the Digital Twin Precision Treatment Program. Scientific Reports, 11(1).
Shamanna, P., Erukulapati, R. S., Shukla, A., Shah, L., Willis, B., Thajudeen, M., Kovil, R., Baxi, R., Wali, M., Damodharan, S., & Joshi, S. (2024). One-year outcomes of a digital twin intervention for type 2 diabetes: a retrospective real-world study. Scientific Reports, 14(1).
Shamanna, P., Joshi, S., Dharmalingam, M., Vadavi, A., Keshavamurthy, A., Shah, L., Samajdar, S. S., & Mechanick, J. I. (2024). Digital Twin in Managing Hypertension Among People With Type 2 Diabetes: 1-Year Randomized Controlled Trial. JACC: Advances, 3(9).
Shamanna, P., Joshi, S., Shah, L., Dharmalingam, M., Saboo, B., Mohammed, J., Mohamed, M., Poon, T., Kleinman, N., Thajudeen, M., & Keshavamurthy, A. (2021). Type 2 diabetes reversal with digital twin technology-enabled precision nutrition and staging of reversal: a retrospective cohort study. Clinical Diabetes and Endocrinology, 7(1).
Shamanna, P., Joshi, S., Thajudeen, M., Shah, L., Poon, T., Mohamed, M., & Mohammed, J. (2024). Personalized nutrition in type 2 diabetes remission: application of digital twin technology for predictive glycemic control. Frontiers in Endocrinology, 15, 1485464.
Singh, M., Fuenmayor, E., Hinchy, E. P., Qiao, Y., Murray, N., & Devine, D. (2021). Digital twin: Origin to future. In Applied System Innovation (Vol. 4, Issue 2). MDPI AG.
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Health and Treatment of Diabetes Mellitus. International Journal of Health Sciences, 5(1), I–V.
Thamotharan, P., Srinivasan, S., Kesavadev, J., Krishnan, G., Mohan, V., Seshadhri, S., Bekiroglu, K., & Toffanin, C. (2023). Human Digital Twin for Personalized Elderly Type 2 Diabetes Management. Journal of Clinical Medicine, 12(6).
Tomic, D., Shaw, J. E., & Magliano, D. J. (2022). The burden and risks of emerging complications of diabetes mellitus. In Nature Reviews Endocrinology (Vol. 18, Issue 9, pp. 525–539). Nature Research.
W.C Mukura, N., & Ndlovu, B. (2023, September 12). Performance evaluation of artificial intelligence in decision support system for heart disease risk prediction. Proceedings of the International Conference on Industrial Engineering and Operations Management.
Xia, L., Nan, B., & Li, Y. (2023). Debiased lasso for generalized linear models with a diverging number of covariates. Biometrics, 79(1), 344–357.
Yang, X., Lan, W., Lin, C., Zhu, C., Ye, Z., Chen, Z., & Zheng, G. (2025). Atrial fibrillation risk model based on LASSO and SVM algorithms and immune infiltration of key mitochondrial energy metabolism genes. Scientific Reports, 15(1), 6681.
Zhang, E., Goto, R., Sagan, N., Mutter, J., Phillips, N., Alizadeh, A., Lee, K., Blanchet, J., Pilanci, M., & Tibshirani, R. (2025). LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization.
Zhang, Y., Qin, G., Aguilar, B., Rappaport, N., Yurkovich, J. T., Pflieger, L., Huang, S., Hood, L., & Shmulevich, I. (2024). A framework towards digital twins for type 2 diabetes. Frontiers in Digital Health, 6.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Sanele Hadebe, Belinda Ndlovu, Kudakwashe Maguraushe

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.