Comparative Study of Pharmaceutical, Herbal Medicine, and Low-Value Alternating Electromagnetic Radiation as Anti-Malaria Treatment

Authors

  • Abayomi Alade Physics and Electronics Department, Adekunle Ajasin University Akungba, Nigeria

DOI:

https://doi.org/10.47540/ijias.v3i3.970

Keywords:

Anti-malaria Therapy, Electromagnetic Field Radiation, Haematology, Malaria, Pharmaceutical

Abstract

Malaria is a significant global health burden, particularly in regions with limited healthcare resources. Pharmaceutical interventions, specifically artemisinin-based combination therapies (ACTs), have long been the mainstay of malaria treatment due to their proven efficacy in eliminating Plasmodium parasites. Herbal medicine has also gained attention as a potential alternative or adjunctive therapy. Nevertheless, the emergence of drug-resistant strains, notably in Southeast Asia and Africa, poses a considerable challenge to the effectiveness of these pharmaceutical treatments. Using low-value alternating electromagnetic field (EMF) radiation as an anti-malaria treatment is a novel approach that requires further investigation to determine its therapeutic potential. This research studies the comparative analysis of the effect of pharmaceutical intervention, herbal medicine, and low-value alternating EMF as anti-malaria treatments. The research methodology involves a systematic literature review of relevant scientific databases, design, construction, and administration of 20mT & 30mT electromagnetic field, Lumartem and Thitonia Diversifolia (Jume 12) to plasmodium berghei-infected mice for four days consecutively at the same time interval. Results revealed that all treatments were significantly effective. Lumartem is maximally effective from the third day, while Tihonia Diversifolia was maximally effective on the second day. EMF 10mT was maximally effective on the third day, while EMF 20mT did not fully align with the non-infected mice trend, but it is likely to align if treatment continues. The results of this comparative study will contribute to the body of knowledge regarding the effectiveness of pharmaceutical, herbal medicine, and low-value alternating electromagnetic field treatments for malaria.

References

Ahmad, A., Patel, I., Sanyal, S., Balkrishnan, R., & Mohanta, G.P. (2014). Availability, Cost, and Affordability of Antimalarial Medicines in India. International Journal of Pharmaceutical and Clinical Research, 6(1), 7-12

Alkandahri, M.Y., Yuniarsih, N., Berbudi, A., & Subarnas, A. (2022). Antimalaria Activities of Several Active Compounds from Medicinal Plants. Pharmacognosy Journal, 14(1), 245-252.

Ashley, E. A., Dhorda, M., Fairhurst, R. M., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J. M., Mao, S., Sam, B., Sopha, C., Chuor, C. M., Nguon, C., Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K., Chutasmit, K., Suchatsoonthorn, C., & Runcharoen, R. (2014). Spread of artemisinin resistance in Plasmodium falciparum malaria. The New England Journal of Medicine, 371(5), 411-423.

Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K.E., Moyes, C.L., Henry, A.J., Eckhoff, P.A., Wenger, E.A., Briët, O.J., Briët, O.J., Penny, M.A., Penny, M.A., Smith, T., Smith, T., Bennett, A., Yukich, J.O., Eisele, T.P., Griffin, J.T., Fergus, C.A., Lynch, M., Lindgren, F., Cohen, J.M., Murray, C.J., Smith, D.L., Hay, S.I., Hay, S.I., Hay, S.I., Cibulskis, R.E., & Gething, P.W. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526, 207 – 211.

Bethencourt, C., Marrero, G.A., & Ngoudji, C. (2023). The Fight Against Malaria: A New Index for Quantifying and Assessing Policy Implementation Actions to Reduce Malaria Burden in Sub-Saharan Africa. The Journal of Development Studies, 59, 1092 – 1113.

Cakır, D.U., Yokus, B., Akdag, M.Z., Sert, C., & Mete, N. (2009). Alterations of hematological variations in rats exposed to extremely low-frequency magnetic fields (50 Hz). Archives of medical research, 40 5, 352-6.

Calleri, G., Balbiano, R., & Caramello, P. (2013). Are artemisinin-based combination therapies effective against Plasmodium malariae? The Journal of antimicrobial chemotherapy, 68 6, 1447-8.

Coronado, L.M., Montealegre, S., Chaverra, Z., Mojica, L., Espinosa, C., Almanza, A., Correa, R., Stoute, J.A., Gittens, R.A., & Spadafora, C. (2016). Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields. PLoS ONE, 11.

Coronado, L.M., Stoute, J.A., Nadovich, C.T., Cheng, J., Correa, R., Chaw, K., González, G., Zambrano, M., Gittens, R.A., Agrawal, D.K., Jemison, W.D., Donado Morcillo, C.A., & Spadafora, C. (2023). Microwaves can kill malaria parasites non-thermally. Frontiers in Cellular and Infection Microbiology, 13.

Cosic, I., Cosic, D., & Lazar, K. (2016). Environmental Light and Its Relationship with Electromagnetic Resonances of Biomolecular Interactions, as Predicted by the Resonant Recognition Model. International Journal of Environmental Research and Public Health, 13.

Cosic, I., Caceres, J.H., & Cosic, D. (2015). Possibility to interfere with malaria parasite activity using specific electromagnetic frequencies. EPJ Nonlinear Biomedical Physics, 3, 1-11.

Dash, M., & Das, A. (2016). A One-Stop Novel Drug for Malaria Treatment and Control. Journal of Infectious Disease and Pathology, 1(2), 1000107.

Dele, A.D. (2015). Oscilating magnetic field an anti malaria therapy. International Journal of Physical Sciences, 10, 329-334.

Devillers, J., & Devillers, H. (2019). Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR and QSAR in Environmental Research, 30, 801-824.

Gilson, R.C., Deissler, R.J., Bihary, R.F., Condit, W.C., Thompson, M.E., Blankenship, D., Grimberg, K.O., Brown, R.W., & Grimberg, B.T. (2018). Growth of Plasmodium falciparum in response to a rotating magnetic field. Malaria Journal, 17(190).

Garg, G., Singh, S., Singh, A.K., & Rizvi, S.I. (2020). Characteristics of Healthy Blood. In: Sholl, J., Rattan, S.I. (eds) Explaining Health Across the Sciences. Healthy Ageing and Longevity, vol 12. Springer,

Kang, H.C., & Koppula, S. (2014). Hepatoprotective Effect of Houttuynia cordata Thunb Extract against Carbon Tetrachloride-induced Hepatic Damage in Mice. Indian Journal of Pharmaceutical Sciences, 76, 267- 273.

Kazaz, B., Webster, S., & Yadav, P. (2016). Interventions for an artemisinin-based malaria medicine supply chain. Production and Operations Management, 25, 1576-1600.

Kıvrak, E.G., Yurt, K.K., Kaplan, A.A., Alkan, I., & Altun, G. (2017). Effects of electromagnetic fields exposure on the antioxidant defense system. Journal of Microscopy and Ultrastructure, 5, 167-176.

Mattsson, M., & Simkó, M. (2019). Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Medical Devices (Auckland, N.Z.), 12, 347-368.

Mhaibes, A.A., & Ghadhban, R.F. (2018). 14- Study Effect of Electromagnetic Field (EMF) and Mobile Phone Radiation On Some Hematological, Biochemical, And Hormonal Parameters In Female Rats. Bas. J. Vet. Res., 17(1), 155-164.

Mishra, M., Mishra, V.K., Kashaw, V., Iyer, A.K., & Kashaw, S.K. (2017). Comprehensive review on various strategies for antimalarial drug discovery. European journal of medicinal chemistry, 125, 1300-1320.

Mustafa, B.T., Yaba, S.P., & Ismail, A.H. (2020). Experimental Evaluation of the Static Magnetic Field Effect on White Blood Cells: In Vivo Study. Materials Science Forum, 1002, 412-419.

Nik Kamarudin, N.A., Mohammed, N.A., & Mustaffa, K.M. (2017). Aptamer Technology: Adjunct Therapy for Malaria. Biomedicines, 5.

Noronha, M., Pawar, V.A., Prajapati, A.S., & Subramanian, R.B. (2020). A literature review on traditional herbal medicines for malaria. South African Journal of Botany, 128, 292-303.

Onguéné, P.A., Ntie‐Kang, F., Mbah, J.A., Lifongo, L.L., Ndom, J.C., Sippl, W., & Mbaze, L.M. (2014). The potential of anti-malarial compounds derived from African medicinal plants, part III: an in silico evaluation of drug metabolism and pharmacokinetics profiling. Organic and Medicinal Chemistry Letters, 4.

Pan, W., Xu, X., Shi, N.O., Tsang, S.W., & Zhang, H. (2018). Antimalarial Activity of Plant Metabolites. International Journal of Molecular Sciences, 19.

Panda, S., Swaminathan, S., Hyder, K.A., Christophel, E.M., Pendse, R., Sreenivas, A., Laksono, S.J., Srivastava, R., Nair, G.B., Aditama, T.Y., Singhasivanon, P., Thapa, A.B., & Sarkar, S. (2017). Drug resistance in malaria, tuberculosis, and HIV in South East Asia: biology, programme, and policy considerations. The BMJ, 358.

Pohlit, A.M., Lima, R.B., Frausin, G., Silva, L.F., Lopes, S.C., Moraes, C.B., Cravo, P.V., Lacerda, M., Siqueira, A.M., Freitas-Junior, L.H., & Costa, F.T. (2013). Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads. Molecules, 18, 9219-9240.

Port, J.R., Nguetse, C.N., Adukpo, S., & Velavan, T.P. (2014). A reliable and rapid method for molecular detection of malarial parasites using microwave irradiation and loop mediated isothermal amplification. Malaria Journal, 13.

Ribeiro, G.D., Rei Yan, S.L., Palmisano, G., & Wrenger, C. (2023). Plant Extracts as a Source of Natural Products with Potential Anti-malarial Effects: An Update from 2018 to 2022. Pharmaceutics. 15(6), 1638.

Rosenthal, P.J., John, C.C., & Rabinovich, N.R. (2019). Malaria: How Are We Doing and How Can We Do Better? The American Journal of Tropical Medicine and Hygiene, 100, 239-241.

Saini, A. & Gupta, P. (2021). From conventional treatment to targeted anti-malarial therapy: building up on innovations. Indo Global J. Pharm. Sci. 11(1), 15-27..

Sarookhani, M.R., Safari, A., Zahedpanah, M., & Rezaei, M.A. (2012). Effects of 950 MHz mobile phone electromagnetic fields on the peripheral blood cells of male rabbits. African Journal of Pharmacy and Pharmacology, 6, 300-304.

Seo, J.Y., Lee, S., & Kim, S.H. (2015). Performance evaluation of the new hematology analyzer Sysmex XN‐series. International Journal of Laboratory Hematology, 37.

Shojaeifard, M.B., Jarideh, S., Owjfard, M., Nematollahii, S., Talaei-Khozani, T., & Malekzadeh, S. (2018). Electromagnetic Fields of Mobile Phone Jammer Exposure on Blood Factors in Rats. Journal of Biomedical Physics & Engineering, 8, 403-408.

Sinha, S., Medhi, B., & Sehgal, R. (2014). Challenges of Drug-resistant malaria. Parasite, 21(4), 61.

Solfaine, R., Muniroh, L., & Hamid, I.S. (2022). Study of Thitonia Diversifolia Extract in Histomorphology of Pancreas and Interleukin-1beta Expression on Aloxan Induced Wistar Rats. Jurnal Sain Veteriner. 40(1), 44-51.

Teng, W.-C., Kiat, H.H., Suwanarusk, R., & Koh, H.-L. (2016). Medicinal Plants and Malaria: Applications, Trends, and Prospects (1st ed.). CRC Press.

Vaca-González, J.J., Cantillo Bermúdez, J.I., Rodríguez Sarmiento, L.A., & Fonseca Velásquez, A. (2022). Electromagnetic fields as a non-invasive alternative therapy for the treatment of musculoskeletal diseases. Journal of Applied Research and Technology, 20(2), 245-259.

Varo, R., Crowley, V.M., Sitoe, A., Madrid, L., Serghides, L., Kain, K.C., & Bassat, Q. (2018). Adjunctive therapy for severe malaria: a review and critical appraisal. Malaria Journal, 17(47).

Wei, Y., & Wang, X. (2022). Biological effects of rotating magnetic field: A review from 1969 to 2021. Progress in biophysics and molecular biology. (178), 103-115.

Wells, T. N., Hooft van Huijsduijnen, R., Van Voorhis, W. C., & Malaria NTD Roadmap Box 1 Consortia. (2015). Malaria medicines: A glass half full? Nature Reviews Drug Discovery, 14(6), 424-442.

World Health Organization. (2020). World malaria report 2020. [ONLINE] https://www.who.int/teams/global-malaria programme/reports/world-malaria-report-2020

Wu, W., Liu, R., Chen, L., Chen, H., & Zhang, S. (2016). Disequilibrium of Blood Coagulation and Fibrinolytic System in Patients With Coronary Artery Ectasia. Medicine, 95(8), 1-6.

Published

2023-10-30

How to Cite

Alade, A. (2023). Comparative Study of Pharmaceutical, Herbal Medicine, and Low-Value Alternating Electromagnetic Radiation as Anti-Malaria Treatment. Indonesian Journal of Innovation and Applied Sciences (IJIAS), 3(3), 268-281. https://doi.org/10.47540/ijias.v3i3.970