Improved Creep Resistance at 1000°C of a Medium Entropy Alloy by the In Situ Formation of Intergranular MC Carbides
DOI:
https://doi.org/10.47540/ijias.v4i2.971Keywords:
Creep Resistance, High Temperature, Medium Entropy Alloy, Thermal AnalysisAbstract
A Cantor’s alloy with modified contents in manganese and chromium, elaborated by classical foundry, was enriched either in tantalum and carbon or in hafnium and carbon, to promote the formation of MC carbides to try improving the poor creep resistance of the original quinary alloy for possible use at 1000°C. Similarly to what was observed in recent investigations, metallography allowed checking that interdendritic/intergranular MC carbides were obtained here too. The two monocarbides–containing alloys were first subjected to differential thermal analysis to specify notably their melting start temperatures, to validate the chosen temperature for the creep tests. Three-point flexural creep tests were then performed at 1000°C, which indisputably demonstrated the outstanding strengthening effect of these MC carbides for the modified Cantor’s alloy.
References
Anzini, E., Glaenzer, N., Mignanelli, P.M., Hardy, M.C., Stone, H.J., Pedrazzini, S. (2020). The effect of manganese and silicon additions on the corrosion resistance of a polycrystalline nickel-based superalloy. Condensed Matter, 1-21.
Asadikiya, M., Zhang, Y., Wang, L., Apelian, D., Zhong, Y. (2022). Design of ternary high-entropy aluminum alloys (HEAls). Journal of Alloys and Compounds, 891: 161836.
Balikci, E., Altincekic, A. (2019). Fine precipitates in nickel base superalloys. Journal of Material Science and Technology Research, 6: 1-8.
Barajas-Alvarez, M.R., Bedolla-Jacuinde, A., Lopez-Morelos, V.H., Ruiz, A. (2022). Creep behavior and microstructural characterization of cobalt-based superalloy. MRS Advances, 7: 1109-1114.
Berthod, P. (2023a). Strengthening against Creep at Elevated Temperature of HEA Alloys of the CoNiFeMnCr Type Using MC-Carbides, In: Supplemental Proceedings to the TMS 2023 Annual Meeting & Exhibition (San Diego): 1103-1111.
Berthod, P. (2023b). High Temperature Oxidation of CoNiFeMnCr High Entropy Alloys Reinforced by MC-Carbides, In: Supplemental Proceedings to the TMS 2023 Annual Meeting & Exhibition (San Diego): 933-941.
Bradley, E.F. (1988). Superalloys: A Technical Guide, ASM International, Metals Park.
Bürckner, M.L.; Mengis, L., White, E.M.H., Galetz, M.C. (2023). Influence of copper and aluminum substitution on high-temperature oxidation of the FeCoCrNiMn "Cantor" alloy. Materials and Corrosion, 74:79-90.
Campo, K.N., de Freitas, C.C.; da Fonseca, E.B., Caram, R. (2021). CrCuFeMnNi high-entropy alloys for semisolid processing: The effect of copper on phase formation, melting behavior, and semisolid microstructure. Materials Characterization, 178:111260.
Cantor, B. (2021). Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 120: 100754.
Chang, S.H., Chen, C.C. (2014a). The effects of HIP, solution heat treatment and aging treatments on the microstructure and mechanical properties of sintering cobalt-based alloys strengthened with tantalum carbide additives. Materials Transactions, 55: 1755-1761.
Chang, S.H.; Chen, C.C. (2014b). Microstructure and mechanical properties of cobalt-based alloys strengthened with tantalum carbide powder via vacuum sintering and HIP treatments. Materials Transactions, 55: 1623-1629.
Chen, Q., Zhou, K., Jiang, L., Lu, Y., Li, T. (2015). Effects of Fe Content on Microstructures and Properties of AlCoCrFexNi High-Entropy Alloys. Arabian Journal for Science and Engineering, 40: 3657-3663.
Chen, S., Qiao, J., Diao, H., Yang, T., Poplawsky, J., Li, W., Meng, F., Tong, Y., Jiang, L., Liaw, P.K. et al (2023). Extraordinary creep resistance in a non-equiatomic high-entropy alloy from the optimum solid-solution strengthening and stress-assisted precipitation process. Acta Materialia, 244:118600.
Donachie, M.J. &Donachie, S.J. (2002). Superalloys: A Technical Guide, 2nd edition, ASM International, Materials Park.
Firstov, S.A., Rogul, T.G., Krapivka, N.A., Ponomarev, S.S., Kovylyaev, V.V., Danilenko, N.I., Bega, N.,D., Danilenko, V.I., Chugunova, S.I. (2016). Structural Features and Solid-Solution Hardening of High-Entropy CrMnFeCoNi Alloy. Powder Metallurgy and Metal Ceramics, 55: 225-235.
Galetz, M.C., Schlereth, C., White, E.M.H. (2021). Behavior of copper-containing high-entropy alloys in harsh metal-dusting environments. Materials and Corrosion, 72: 1232-1242.
Gui, W., Zhang, H., Yang, M., Jin, T., Sun, X., Zheng, Q. (2017). The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. Journal of Alloys and Compounds, 695: 1271-1278.
Gui, W., Zhang, X., Zhang, H., Sun, X., Zheng, Q. (2019). Melting of primary carbides in a cobalt-base superalloy. Journal of Alloys and Compound, 787: 152-157.
Gwalani, B., Gorsse, S., Soni, V., Carl, M., Ley, N., Smith, J., Ayyagari, A.V., Zheng, Y., Young, M., Mishra, R.S., et al (2019). Role of copper on L12 precipitation strengthened fcc based high entropy alloy. Materialia, 6:100282.
Ilyas, S., Ranjan Srivastava, R., Singh, V.; Chi, R., Kim, H. (2022). Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104. Waste Management, 154: 175-186.
Jafari, A., Khorram, A., Boutorabi, S. M.A. (2018). Microstructure Evolution of MAR-M302 Superalloy During Heat Treatment at High Temperatures. Transactions of the Indian Institute of Metals, 71: 685-695.
Ji, W., Wu, M. (2022). Nanoscale origin of the crystalline-to-amorphous phase transformation and damage tolerance of Cantor alloys at cryogenic temperatures. Acta Materialia, 226:117639.
Kaypour, H., Nategh, S., Gholamipour, R., Khodabandeh, A. (2023). Effect of Aluminum Addition on Microstructure, Recrystallization and Work Hardening of MnCrCoFeNi High-Entropy Alloy. Transactions of the Indian Institute of Metals, 76:119-133.
Kofstad, P. (1988). High temperature corrosion, Elsevier applied science, London.
Kriese, F., Lassen, S., Niemeyer, B. (2023). Recovery process for critical metals: selective adsorption of nickel(II) from cobalt(II) at acidic condition and elevated temperature. Adsorption Science & Technology, 5334353.
Li, Q., Tian, S., Yu, H., Tian, N., Su, Y., Li, Y. (2015). Effects of carbides and its evolution on creep properties of a directionally solidified nickel-based superalloy. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 633: 20-27.
Li, X.W., Wang, L., Dong, J.S., Lou, L.H. (2014). Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. Journal of Materials Science & Technology, 30: 1296-1300.
Li, Y., Fu, H., Zhu, Z., Zhang, L., Li, Z., Li, H., Zhang, H. (2023). Effects of Fe/Ni Ratio on Microstructure and Properties of FeNiCrAlNb High-Entropy Alloys. Advanced Engineering Materials, 25: 2201686.
Liu, C., Jiang, H., Dong, J., Yao, Z., Niu, Y. (2020). Cold deformation mechanism of cobalt-base superalloy GH5605. Materials Letters, 267: 127533.
Lu, L., Ni, J., Zhao, D., Wang, C. (2021). Influence of Si and Mn on Solidification Characteristics and Mechanical Properties of a Ni-Based Superalloy. Zhuzao, 70: 52-60.
Lughofer, C., Tost, M. (2023). Lithium and Cobalt-Opportunities and Problems Regarding Two Critical Raw Materials in the EU. Berg- und Hüttenmännische Monatshefte, 186: 305-308.
Mukanov, S., Loginov, P., Fedotov, A., Bychkova, M., Antonyuk, M., Levashov, E. (2023). The Effect of Copper on the Microstructure, Wear and Corrosion Resistance of CoCrCuFeNi High-Entropy Alloys Manufactured by Powder Metallurgy. Materials, 16: 1178.
Oliveros, D., Fraczkiewicz, A., Dlouhy, A., Zhang, C., Song, H., Sandfeld, S., Legros, M. (2021). Orientation-related twinning and dislocation glide in cantor high entropy alloy at room and cryogenic temperature studied by in situ TEM straining. Materials Chemistry and Physics, 272:124955.
Pedrazzini, S., Child, D.J., West, G., Doak, S., Hardy, M.C., Moody, M.P., Bagot, P.A.J. (2016). Oxidation behaviour of a next generation polycrystalline Mn containing Ni-based superalloy. Scripta Materialia, 55: 8741-8755.
Qin, X.Z., Wang, J.Q., Cheng, S.H., Wu, Y.S., Zhou, L.Z. (2023). Evolution of microstructure and 800°C/294 MPa stress rupture property of cast Ni-based superalloys during long-term thermal exposure: Role and behavior of primary MC carbide. Materials Science & Engineering, A: Structural Materials: Properties, Microstructure and Processing, 881: 145416.
Razumov, N., Makhmutov, T., Kim, A., Masaylo, D., Kovalev, M., Popovich, A. (2023). Synthesis and properties of high-entropy CoCrFeNiMnWx alloys. Journal of Materials Research and Technology, 24: 9216-9224.
Sathyanarayana R.CH.V., Venugopal, D., Srikanth, P.R., Lokeshwaran, K., Srinivas, M., Chary, C.J., Ashok Kumar, A. (2018). Effect of aluminum addition on the properties of CoCuFeNiTi high entropy alloys. Materials Today: Proceedings, 5:26823-26828.
Semiatin, S.L., Levkulich, N.C., Saurber, A.E., Mahaffey, D.W., Payton, E.J., Senkov, O.N. (2017). The Kinetics of Precipitate Dissolution in a Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48: 5567-5578.
Sims, C.T. &Hagel, W.C. (1972). The Superalloys, John Wiley and Sons, New York.
Smekhova, A., Kuzmin, A., Siemensmeyer, K., Abrudan, R., Reinholz, U., Buzanich, A.G., Schneider, M., Laplanche, G., Yusenko, K.V. (2022). Inner relaxations in equiatomic single-phase high-entropy Cantor alloy. Condensed Matter, 1-31.
Sun, W., Qin, X., Guo, J., Lou, L., Zhou, L. (2015). Thermal stability of primary MC carbide and its influence on the performance of cast Ni-base superalloys. Materials & Design, 69: 81-88.
Thurston, Keli V.S., Gludovatz, B., Hohenwarter, A., Laplanche, G., George, E.P., Ritchie, R.O. (2017). Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics, 88:65-72.
Wei, Z., Zhao, W., Zhou, J., Liu, C., Zheng, Z., Qu, S., Tao, C. (2015). Microstructure Evolution of K6509 Cobalt-base Superalloy for Over-temperature. Procedia Engineering, 99: 1302-1310.
Yin, Y., Kent, D., Tan, Q., Bermingham, M., Zhang, M. (2020). Spheroidization behaviour of a Fe-enriched eutectic high-entropy alloy. Journal of Materials Science & Technology, 51: 173-179.
Young, D.J. (2008). High temperature oxidation and corrosion of metal, Elsevier Corrosion Series, Amsterdam.
Zhao, K. (2014). Prediction of TCP phases in nickel-base superalloys. Advanced Materials Research, 941-944: 120-123.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Corentin Gay, Nassima Chenikha, Pauline Spaeter, Erwan Etienne, Anne Vernière, Lionel Aranda, Patrice Berthod
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.