Morphological, Morphometric, and Distribution Pattern Characteristics of Optimal Harvest Phase Sago in Forest Area Based on Drone Imagery
DOI:
https://doi.org/10.47540/ijsei.v5i3.1720Keywords:
Drone Imagery, Morphological, Morphometric, Optimal Harvest Phase, SagoAbstract
The development of remote sensing systems is considered an important innovation in supporting the optimization of today's food crop production, especially the development of sensor technology that can capture detailed variations in plant information. On the other hand, Sago is one of the food crops that is considered to have the potential for development to improve the community's economy and increase global food security. The main objective of this study is to extract the morphological characteristics, morphometry, and distribution patterns of sago in the optimal harvest phase in non-cultivated areas. Very high-resolution Drone imagery was produced through recording with a flight height of 50 meters above the ground using the DJI Mavic 3 Pro. Samples of sago stand coordinates in the optimal harvest phase were collected through field observations. The characteristics of each sample were extracted through a visual interpretation approach and the nearest neighbor analysis technique. The results showed that the morphological and morphometric characteristics of sago stands in the optimal harvest phase can be assessed from Drone Imagery. Each sample shows the same pattern with the shape of trees, leaflets, and canopies that stand out in one clump and have 3-6 young leaflets. The average morphometric parameters of the optimal harvest phase showed low correlation and were randomly distributed with very sparse distances between stands (around 7 trees/ha).
Downloads
References
Awais, M., Li, W., Cheema, M. J. M., Hussain, S., Shaheen, A., Aslam, B., Liu, C., & Ali, A. (2021). Assessment of optimal flying height and timing using high-resolution unmanned aerial vehicle images in precision agriculture. International Journal of Environmental Science and Technology, 1–18.
Bintoro, M. H., Nurulhaq, M. I., Pratama, A. J., Ahmad, F., & Ayulia, L. (2018). Growing area of sago palm and its environment. Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, 17–29.
Chua, S. N. D., Kho, E. P., Lim, S. F., & Hussain, M. H. (2022). Sago palm (Metroxylon sagu) starch yield, influencing factors and estimation from morphological traits. Advances in Materials and Processing Technologies, 8(2), 1845–1866.
Deur, M., Gašparović, M., & Balenović, I. (2021). An evaluation of pixel-and object-based tree species classification in mixed deciduous forests using pansharpened very high spatial resolution satellite imagery. Remote Sensing, 13(10), 1868.
Dewayani, W., Mahendradatta, M., & Laga, A. (2024a). Post-harvest handling of sago and the sustainability of the processed results. BIO Web of Conferences, 96, 02001.
Dewayani, W., Mahendradatta, M., & Laga, A. (2024b). Post-harvest handling of sago and the sustainability of the processed results. BIO Web of Conferences, 96, 02001.
Dewayani, W., Suryani, Arum, R. H., & Septianti, E. (2022). Potential of sago products supporting local food security in South Sulawesi. IOP Conference Series: Earth and Environmental Science, 974(1), 012114.
Djoefrie, M. H. B., Pembayun, P., & Baka, L. R. (2024). Sago Production Potential in Several Regions in Indonesia. The 14th International Sago Symposium SAGO 2023 TOKYO, 23.
dos Santos, L. M., de Souza Barbosa, B. D., Diotto, A. V., Andrade, M. T., Conti, L., & Rossi, G. (2020). Determining the leaf area index and percentage of area covered by coffee crops using UAV RGB images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6401–6409.
Emimi, M., Khaleel, M., & Alkrash, A. (2023). The current opportunities and challenges in drone technology. Int. J. Electr. Eng. and Sustain., 74–89.
FathnoerA, V., BintoroA, M. H., & Lubis, I. (2020). Assessment of morphological attributes of sago palm accessions of Aimas, Sorong, West Papua, Indonesia. Journal of Tropical Crop Science Vol, 7(1).
Geng, R., Jin, S., Fu, B., & Wang, B. (2020). Object-based wetland classification using multi-feature combination of ultra-high spatial resolution multispectral images. Canadian Journal of Remote Sensing, 46(6), 784–802.
Ghodousi, M., Sadeghi-Niaraki, A., Rabiee, F., & Choi, S.-M. (2020). Spatial-temporal analysis of point distribution pattern of schools using spatial autocorrelation indices in Bojnourd city. Sustainability, 12(18), 7755.
Girsang, W. (2018). Feasibility of small-scale sago industries in the Maluku Islands, Indonesia. Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, 109–121.
Gowroju, S., & Santhosh Ramchander, N. (2023). Applications of Drones—A Review. Drone Technology: Future Trends and Practical Applications, 183–206.
Gusmayanti, E., Machida, T., & Yoshida, M. (2008). Observation of leaf characteristics of spineless sago palm (Metroxylon sagu) at different phenological stages. Sago Palm, 16(2), 95–101.
Hamylton, S. M., Morris, R. H., Carvalho, R. C., Roder, N., Barlow, P., Mills, K., & Wang, L. (2020). Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. International Journal of Applied Earth Observation and Geoinformation, 89, 102085.
Hasan, U., Sawut, M., & Chen, S. (2019). Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability, 11(23), 6829.
Hussain, H., Kamarol, S. I. L., Julaihi, N., & Tommy, R. (2022). Identification of gene transcripts contributing to trunking and non-trunking sago palm (Metroxylon sagu Rottb.). Journal of Applied Horticulture, 24(1).
Irawan, A. F., Kusmiyati, F., Suwarno, M., Purbayanti, E. D., Abd Rahim, G., & Asmono, D. (2024). Evaluating Sago Palm (Metroxylon sagu) Cultivation Practices: Aspects of Groundwater Level and Reduction of Starch during Harvest Transportation.
Ishak, S. Z. A., Yaakub, A. N., Daud, A. I. A., Hussin, S. H., & Yusof, A. (2021). Constraints affecting the increase of Sago production: A case of Melanau rural youth’s participation in Sago industry in Sarawak, Malaysia. International Journal of Academic Research in Business and Social Sciences, 11(14), 51–70.
Jariyapong, M., Roongtawanreongsri, S., Romyen, A., & Somboonsuke, B. (2021). Growth prediction of sago palm (Metroxylon sagu) in Thailand using the Linear Mixed-effect model. Biodiversitas Journal of Biological Diversity, 22(12).
Jong, F. S. (2018). An overview of sago industry development, 1980s-2015. Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, 75–89.
Jong, F.-S. (1995). Research for the development of sago palm (Metroxylon sagu Rottb.) cultivation in Sarawak, Malaysia. Wageningen University and Research.
Karim, H. A. (2021). Ecological study of sago palm (metroxylon sagu rott ver molat (becc.)) in the natural habitat at malili district east luwu south sulawesi. IOP Conference Series: Earth and Environmental Science, 807(2), 022031.
Konuma, H. (2018). Status and outlook of global food security and the role of underutilized food resources: Sago palm. Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods, 3–16.
Kundre, J. L. (2023). An Overview of the Life Skills of Sago Processing into Bagea for the Easy Generation in Ihamahu Village, Saparua Sub-district, Central Maluku Regency. International Journal of Education, Information Technology, and Others, 6(2), 129–138.
Lastilla, L., Belloni, V., Ravanelli, R., & Crespi, M. (2021). DSM generation from single and cross-sensor multi-view satellite images using the new agisoft metashape: The case studies of Trento and Matera (Italy). Remote Sensing, 13(4), 593.
Lewaherilla, N. E., Soplanit, A., & Beding, P. (2023). Sustainable specialized village-based sago (Metroxylon sago Rottb) management direction in Jayapura Regency. IOP Conference Series: Earth and Environmental Science, 1192(1), 012054.
Li, L., Mu, X., Qi, J., Pisek, J., Roosjen, P., Yan, G., Huang, H., Liu, S., & Baret, F. (2021). Characterizing reflectance anisotropy of background soil in open-canopy plantations using UAV-based multiangular images. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 263–278.
Liu, Q., & Lee, J. (2023). Spatiotemporal Nearest Neighbor Analytics. In Spatiotemporal Analytics (pp. 53–76). CRC Press.
Maherawati, Iman Suswanto, S. (2023). Agronomic Characteristics and Harvest Time as Determinants of Starch Production in Smallholder Sago Palm Plantations. Akta Agrosia, 26(2), 79–86.
Manar, P. Al, Zuhud, E. A. M., Andarwulan, N., & Bintoro, M. H. (2023). Morphological Characteristics and Potential of Sago (Metroxylon spp.) in Lingga Regency, Riau Islands, Indonesia. Jurnal Manajemen Hutan Tropika, 29(1), 11–11.
Masluki, Bintoro, M. H., Agusta, H., & Sudarsono, S. (2024). Morphological Diversity and Production of Six Sago (Metroxylon spp.) Accessions from Tana Luwu, South Sulawesi, Indonesia. AGRIVITA Journal of Agricultural Science, 46(1), 156–171.
Masluki. (2022). Keragaman Morfologi, produksi, genetik dan kimia pati sagu (Metroxylon spp.) di Tana Luwu Provinsi Sulawesi Selatan.
Murod, M., Kusmana, C., Bintoro, M. H., & Hilmi, E. (2019). Strategy of sago management sustainability to support food security in Regency of Meranti Islands, Riau Province, Indonesia 1. 11(1).
Nasiri, V., Darvishsefat, A. A., Arefi, H., Pierrot-Deseilligny, M., Namiranian, M., & Le Bris, A. (2021). Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (case study: Hyrcanian mixed forest). Canadian Journal of Forest Research, 51(7), 962–971.
Nurlette, A. R., Mukson, & Sumekar, W. (2021). Sustainable Management of Sago (Metroxylon Spp) Agroindustry in East Indonesia. The International Journal of Social Sciences World (TIJOSSW), 3(2), 33–45.
Oh, S., Jung, J., Shao, G., Shao, G., Gallion, J., & Fei, S. (2022). High-resolution canopy height model generation and validation using USGS 3DEP LiDAR data in Indiana, USA. Remote Sensing, 14(4), 935.
Osozawa, K. (1990). Sago palm and sago production in South Sulawesi: Essay on tropical low land development. PhD dissertation, Kyoto University.(in Japanese).
Pandey, P., & Pandey, M. M. (2021). Research methodology tools and techniques. Bridge Center.
Perz, R., & Wronowski, K. (2019). UAV application for precision agriculture. Aircraft Engineering and Aerospace Technology, 91(2), 257–263.
Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148.
Raj, R., Walker, J. P., Pingale, R., Nandan, R., Naik, B., & Jagarlapudi, A. (2021). Leaf area index estimation using top-of-canopy airborne RGB images. International Journal of Applied Earth Observation and Geoinformation, 96, 102282.
Rampisela, D. A., Sjahril, R., Lias, S. A., & Mulyadi, R. (2018). Transdisciplinary research on local community based sago forest development model for food security and marginal land utilization in the coastal area. IOP Conference Series: Earth and Environmental Science, 157(1), 012065.
Rogerson, P. A. (2019). Statistical methods for geography: A student’s guide.
Rozziansha, T. A. P., Hidayat, P., & Harahap, I. S. (2021). Morphological characters of Rhynchophorus spp.(Coleoptera: Curculionidae) associated with sago, coconut, and oil palm in Indonesia. IOP Conference Series: Earth and Environmental Science, 694(1), 012051.
Sari, D. R. (2024). Agronomic Prospects for New Sago Palm Cultivation by farmers: Time to Harvest and Associated Cultivation Management. The 14th International Sago Symposium SAGO 2023 TOKYO, 85.
Sari, D. R., Asrul, L., Sjahril, R., & Osozawa, K. (2020). Path coefficient analysis for growth characters of sago palm related to trunk formation at three years after transplanting. IOP Conference Series: Earth and Environmental Science, 486(1), 012010.
Seifert, E., Seifert, S., Vogt, H., Drew, D., Van Aardt, J., Kunneke, A., & Seifert, T. (2019). Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sensing, 11(10), 1252.
Sidiq, F. F., Coles, D., Hubbard, C., Clark, B., & Frewer, L. J. (2021). Sago and the indigenous peoples of Papua, Indonesia: A review. Journal of Agriculture and Applied Biology, 2(2), 138–149.
Sidiq, F. F., Coles, D., Hubbard, C., Clark, B., & Frewer, L. J. (2022). Factors influencing consumption of traditional diets: stakeholder views regarding sago consumption among the indigenous peoples of West Papua. Agriculture & Food Security, 11(1), 51.
Singh, P., Pandey, P. C., Petropoulos, G. P., Pavlides, A., Srivastava, P. K., Koutsias, N., Deng, K. A. K., & Bao, Y. (2020). Hyperspectral remote sensing in precision agriculture: present status, challenges, and future trends. Hyperspectral Remote Sensing: Theory and Applications, 121–146.
Suwarda, R., Sondari, D., Nurhafsah, N., & Smith, H. (2024). Potency of sago starch for edible film and coating. AIP Conference Proceedings, 2957(1).
Swastiwi, A. W., Febby Febriyandi, Y. S., & Simbolon, G. (2023). Maritime Community Food Security: Case Study of Meranti Sago. IOP Conference Series: Earth and Environmental Science, 1148(1), 012011.
Swastiwi, A. W., Febriyandi, Y. S. F., & Simbolon, G. (2023). Maritime Community Food Security: Case Study of Meranti Sago. IOP Conference Series: Earth and Environmental Science, 1148(1), 012011.
Tampubolon, A. P., Turjaman, M., & Osaki, M. (2021). Sago Palm Practice as Natural AeroHydro Culture. Tropical Peatland Eco-Management, 363–377.
Timisela, N. R., Siahaya, W. A., Hehanussa, M. M., & Polnaya, F. J. (2022). Condition of Plantation and Development Strategy of Sago Garden. International Journal of Sustainable Development & Planning, 17(2).
Vacca, G., & Vecchi, E. (2024). UAV Photogrammetric Surveys for Tree Height Estimation. Drones, 8(3), 106.
Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J. G. (2021). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies 2022, Vol. 15, Page 217, 15(1), 217.
Viljanen, N., Honkavaara, E., Näsi, R., Hakala, T., Niemeläinen, O., & Kaivosoja, J. (2018). A novel machine learning method for estimating biomass of grass swards using a photogrammetric canopy height model, images and vegetation indices captured by a drone. Agriculture, 8(5), 70.
Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218.
Wonohardjo, E. P., Sunaryo, R. F., Sudiyono, Y., Surantha, N., & Suharjito. (2019). A Systematic Review of SCRUM in Software Development. JOIV : International Journal on Informatics Visualization, 3(2), 108–112.
Yamamoto, Y., Katayama, K., Yoshida, T., Miyazaki, A., Jong, F. S., Pasolon, Y. B., Matanubun, H., Rembon, F. S., & LIMBONGAN, J. (2020). Changes in leaf and trunk characteristics related to starch yield with age in two sago palm folk varieties grown near Jayapura, Papua, Indonesia. Tropical Agriculture and Development, 64(2), 61–71.
Yamamoto, Y., Ochi, A., Yanagidate, I., Ishima, H., Yoshida, T., Rembon, F. S., Pasolon, Y. B., Manaroisong, E., Sayangbati, C., & Maliangkay, R. B. (2022a). Growth characteristics and starch productivity of ‘sagu baruk’(Arenga microcarpa Becc.) on Sangihe Island, North Sulawesi, Indonesia. Tropical Agriculture and Development, 66(1), 12–20.
Yamamoto, Y., Ochi, A., Yanagidate, I., Ishima, H., Yoshida, T., Rembon, F. S., Pasolon, Y. B., Manaroisong, E., Sayangbati, C., & Maliangkay, R. B. (2022b). Growth characteristics and starch productivity of ‘sagu baruk’(Arenga microcarpa Becc.) on Sangihe Island, North Sulawesi, Indonesia. Tropical Agriculture and Development, 66(1), 12–20.
Yamamoto, Y., Rembon, F. S., Omori, K., Yoshida, T., Nitta, Y., Pasolon, Y. B., & Miyazaki, A. (2010). Growth Characteristics and Starch Productivity of Three Varieties of Sago Palm (Metroxylon sagu Rottb.) in Southeast Sulawesi, Indonesia. Tropical Agriculture and Development, 54(1), 1–8.
Yamamoto, Y., Yanagidate, I., Miyazaki, A., Yoshida, T., Irawan, A. F., Pasolon, Y. B., Jong, F. S., Matanubun, H., Arsy, A. A., & Limbongan, J. (2020). Growth Characteristics and Starch Productivity of Folk Varieties of Sago Palm around Lake Sentani near Jayapura, Papua State, Indonesia. Tropical Agriculture and Development, 64(1), 23–33.
Yamamoto, Y., Yoshida, T., Rembon, F. S., Javed, M., Bachri, S., Kakuda, K., Sasaki, Y., Mori, M., & Miyazaki, A. (2020). Changes in Growth and Starch Accumulation Processes of Sago Palm (Metroxylon sagu Rottb.) with Age in a Natural Forest in South Sorong, West Papua, Indonesia. Tropical Agriculture and Development, 64(4), 201–211.
Yater, T., Tubur, H. W., Meliala, C., & Abbas, B. (2019). A comparative study of phenotypes and starch production in sago palm (Metroxylon sagu) growing naturally in temporarily inundated and non inundated areas of South Sorong, Indonesia. Biodiversitas Journal of Biological Diversity, 20(4), 1121–1126.
Ye, Z., Yang, K., Lin, Y., Guo, S., Sun, Y., Chen, X., Lai, R., & Zhang, H. (2023). A comparison between Pixel-based deep learning and Object-based image analysis (OBIA) for individual detection of cabbage plants based on UAV Visible-light images. Computers and Electronics in Agriculture, 209, 107822.
Yurtseven, H., Akgul, M., Coban, S., & Gulci, S. (2019). Determination and accuracy analysis of individual tree crown parameters using UAV based imagery and OBIA techniques. Measurement, 145, 651–664.
Yusuf, Y., Sidiq, R. S. S., & Lestari, N. F. (2022). Social Capital of Local Communities in Improving the Economy Through Utilizing the Potential of Sago in the Peatlands of Meranti Islands Regency. Nusantara Science and Technology Proceedings, 112–121.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Iriansa, Mutmainnah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.