Biotransformation of Heavy Metals by Plant Growth Promoting Endophytic Bacteria: An Assessment

Authors

  • E. Mohana Priya Department of Botany, PSGR Krishnammal College for Women, India
  • K. S. Tamilselvi Department of Botany, PSGR Krishnammal College for Women, India

DOI:

https://doi.org/10.47540/ijsei.v4i1.741

Keywords:

Bacteria, Bioremediation, Endophytes, Heavy Metals, Plant Growth

Abstract

As a consequence of urbanization and industrialization, the environment is progressively polluted with heavy metals which is a problem of great concern. In plants it can create oxidative stress, ethylene production, chlorosis, Necrosis, stunted growth, inhibits various physiological processes, and decrease biomass. Due to their persistent and non-degradable nature, they enter the food chain leading to biomagnification and causing carcinogenic, mutagenic, and lethal effects on humans and animals. Bioremediation, phytoremediation, biotransformation, non-host inoculation, and other methods are used to treat heavy metals in the environment. Endophytic bacteria have gained attention for their potency to remove or immobilize heavy metals. Bacterial bioremediation is an effective and reliable technique to degrade, detoxify, mineralize, transform, or reduce the concentration of pollutants. This review helps in understanding the endophytic bacterial activity on bioremediation along with its plant growth-promoting properties.

Downloads

Download data is not yet available.

References

Aafi, N. E., Brhada, F., Dary, M., Maltouf, A. F., & Pajuelo, E. (2012). Rhizo-stabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. International journal of phytoremediation, 14(3), 261-274.

Afzal, A. M., Rasool, M. H., Waseem, M., & Aslam, B. (2017). Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express, 7(1), 1-9.

Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365-1377.

ALKahtani, M. D., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A. M., Ewais, E. E. D., ... & Abdelaal, K. A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325.

Bhojiya, A. A., & Joshi, H. (2016). Study of potential plant growth-promoting activities and heavy metal tolerance of Pseudomonas aeruginosa HMR16 isolated from Zawar, Udaipur India. Curr. Trends Biotechnol. Pharm, 10(2), 161-168.

Byrne, C., Divekar, S. D., Storchan, G. B., Parodi, D. A., & Martin, M. B. (2009). Cadmium-a metallohormone?. Toxicology and applied pharmacology, 238(3), 266-271.

Chen, B., Shen, J., Zhang, X., Pan, F., Yang, X., & Feng, Y. (2014 (a)). The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One, 9(9), e106826.

Chen, B., Zhang, Y., Rafiq, M. T., Khan, K. Y., Pan, F., Yang, X., & Feng, Y. (2014). Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere, 117, 367-373.

Chen, G., Zeng, G., Tang, L., Du, C., Jiang, X., Huang, G., & Shen, G. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource technology, 99(15), 7034-7040.

Chen, J., Li, N., Han, S., Sun, Y., Wang, L., Qu, Z., ... & Zhao, G. (2020). Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis. FEMS microbiology letters, 367(12), fnaa098.

Dietz, K. J., Baier, M., & Krämer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In Heavy metal stress in plants (pp. 73-97). Springer, Berlin, Heidelberg.

Dolphen, R., & Thiravetyan, P. (2019). Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere, 223, 448-454.

Dutta, P., Karmakar, A., Majumdar, S., & Roy, S. (2018(a)). Klebsiella pneumoniae (HR1) assisted alleviation of Cd (II) toxicity in Vigna mungo: a case study of biosorption of heavy metal by an endophytic bacterium coupled with plant growth promotion. Euro-Mediterranean Journal for Environmental Integration, 3(1), 1-10.

Dutta, S., Mitra, M., Agarwal, P., Mahapatra, K., De, S., Sett, U., & Roy, S. (2018). Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant signaling & behavior, 13(8), e1460048.

Etesami, H. (2018). Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicology and environmental safety, 147, 175-191.

Fryzova, R., Pohanka, M., Martinkova, P., Cihlarova, H., Brtnicky, M., Hladky, J., & Kynicky, J. (2017). Oxidative stress and heavy metals in plants. Reviews of environmental contamination and toxicology volume 245, 129-156.

Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2009). Arsenic pollution sources. Reviews of Environmental Contamination Volume 197, 17-60.

Gill, M. (2014). Heavy metal stress in plants: a review. Int J Adv Res, 2(6), 1043-1055.

Glick, B. R., & Stearns, J. C. (2011). Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. International journal of phytoremediation, 13(sup1), 4-16.

Halliwell, B., & Gutteridge, J. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical journal, 219(1), 1.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian journal of microbiology, 43(10), 895-914.

Haq, F., Butt, M., Ali, H., & Chaudhary, H. J. (2016). Biosorption of cadmium and chromium from water by endophytic Kocuria rhizophila: equilibrium and kinetic studies. Desalination and water treatment, 57(42), 19946-19958.

Hedfi, A., Mahmoudi, E., Boufahja, F., Beyrem, H., & Aïssa, P. (2007). Effects of increasing levels of nickel contamination on structure of offshore nematode communities in experimental microcosms. Bulletin of Environmental Contamination and Toxicology, 79(3), 345-349.

Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., & Zhang, X. Y. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67(11), 2148-2155.

Ibrahim, M. H., Chee Kong, Y., & Mohd Zain, N. A. (2017). Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules, 22(10), 1623.

Khan, A. R., Park, G. S., Asaf, S., Hong, S. J., Jung, B. K., & Shin, J. H. (2017(a)). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PloS one, 12(2), e0171534.

Khan, M. U., Sessitsch, A., Harris, M., Fatima, K., Imran, A., Arslan, M., & Afzal, M. (2015). Cr-resistant rhizo-and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Frontiers in Plant Science, 5, 755.

Kukkola, E., Rautio, P., & Huttunen, S. (2000). Stress indications in copper-and nickel-exposed Scots pine seedlings. Environmental and Experimental Botany, 43(3), 197-210.

Kumar, S., & Trivedi, P. K. (2016). Heavy metal stress signalling in plants. In Plant metal interaction (pp. 585-603). Elsevier.

Li, X., & Christie, P. (2001). Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 42(2), 201-207.

Lim, S. R., & Schoenung, J. M. (2010). Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials, 177(1-3), 251-259.

Liu, X., Yang, C., Zhang, L., Li, L., Liu, S., Yu, J., & Wu, H. (2011). Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology, 20(6), 1422-1431.

Long, X. X., Chen, X. M., Wong, J. W. C., Wei, Z. B., & Wu, Q. T. (2013). Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. Transactions of Nonferrous Metals Society of China, 23(8), 2389-2396.

Luo, D., Zheng, H., Chen, Y., Deleporte, P., Xie, T., Staunton, S., & Wang, G. (2017). Influence of soil properties on Ni accumulation in food crops and corresponding dietary health risk with a typical Chinese diet. Soil Use and Management, 33(4), 653-662.

Maleki, M., Ghorbanpour, M., & Kariman, K. (2017). Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene, 11, 247-254.

Marschner, C. (1996). H. Marschner, Mineral Nutrition of Higher Plants. Academic Press, London (1995), p. 889, (ISBN 0-12-473543-6).

Matulik, A. G., Kerstetter, D. W., Hammerschlag, N., Divoll, T., Hammerschmidt, C. R., & Evers, D. C. (2017). Bioaccumulation and biomagnification of mercury and methylmercury in four sympatric coastal sharks in a protected subtropical lagoon. Marine pollution bulletin, 116(1-2), 357-364.

Meharg, A. A. (1994). Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant, Cell & Environment, 17(9), 989-993.

Mello, I. S., Pietro-Souza, W., Barros, B. M., da Silva, G. F., Campos, M. L., & Soares, M. A. (2019). Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis, 79(3), 251-262.

Mello, I. S., Targanski, S., Pietro-Souza, W., Stachack, F. F. F., Terezo, A. J., & Soares, M. A. (2020). Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicology and Environmental Safety, 202, 110818.

Moreno, F. N., Anderson, C. W., Stewart, R. B., & Robinson, B. H. (2008). Phyto filtration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environmental and Experimental Botany, 62(1), 78-8.

Murch, S. J., Haq, K., Rupasinghe, H. V., & Saxena, P. K. (2003). Nickel contamination affects growth and secondary metabolite composition of St. John's wort (Hypericum perforatum L.). Environmental and Experimental Botany, 49(3), 251-257.

Ortiz-Ojeda, P., Ogata-Gutiérrez, K., & Zuniga-Dávila, D. (2017). Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS microbiology, 3(2), 279.

Rai, V., Khatoon, S., Bisht, S. S., & Mehrotra, S. (2005). Effect of cadmium on growth, ultra-morphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere, 61(11), 1644-1650.

Rai, V., Vajpayee, P., Singh, S. N., & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant science, 167(5), 1159-1169.

Rajkumar, M., Vara Prasad, M. N., Freitas, H., & Ae, N. (2009). Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Critical reviews in biotechnology, 29(2), 120-130.

Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals, 21(3), 321-332.

Román-Ponce, B., Ramos-Garza, J., Arroyo-Herrera, I., Maldonado-Hernández, J., Bahena-Osorio, Y., Vásquez-Murrieta, M. S., & Wang, E. T. (2018). Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Archives of microbiology, 200(6), 883-895.

Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS microbiology letters, 278(1), 1-9.

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological research, 183, 92-99.

Selin, N. E. (2014). Global change and mercury cycling: Challenges for implementing a global mercury treaty. Environmental Toxicology and Chemistry, 33(6), 1202-1210.

Shahzad, R., Bilal, S., Imran, M., Khan, A. L., Alosaimi, A. A., Al-Shwyeh, H. A., & Lee, I. J. (2019). Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation. Biochemical Journal, 476 (21), 3385-3400.

Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental pollution, 154(2), 254-263.

Shaw, B. P., Sahu, S. K., & Mishra, R. K. (2004). Heavy metal induced oxidative damage in terrestrial plants. In Heavy metal stress in plants (pp. 84-126). Springer, Berlin, Heidelberg.

Stambulska, U. Y., & Bayliak, M. M. (2020). Legume-rhizobium symbiosis: secondary metabolites, free radical processes, and effects of heavy metals. Co-Evolution of Secondary Metabolites, 291-322.

Street, R. A. (2012). Heavy metals in medicinal plant products—An African perspective. South African Journal of Botany, 82, 67-74.

Sun, L., Wang, X., & Li, Y. (2016). Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. International journal of phytoremediation, 18(5), 494-501.

Tang, L., Zeng, G. M., Shen, G. L., Li, Y. P., Zhang, Y., & Huang, D. L. (2008). Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental science & technology, 42(4), 1207-1212.

Tirry, N., Joutey, N. T., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., & El Ghachtouli, N. (2018). Screening of plant growth promoting traits in heavy metals resistant bacteria: prospects in phytoremediation. Journal of genetic engineering and biotechnology, 16(2), 613-619.

Ustiatik, R., Nuraini, Y., & Handayanto, E. (2021). Siderophore Production of the Hg-Resistant Endophytic Bacteria Isolated from Local Grass in the Hg-Contaminated Soil. Journal of Ecological Engineering, 22(5).

Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195-206.

Venkatachalam, P., Jayalakshmi, N., Geetha, N., Sahi, S. V., Sharma, N. C., Rene, E. R., ... & Favas, P. J. (2017). Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere, 171, 544-553.

Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS microbiology reviews, 38(4), 633-659.

Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321(1), 385-408.

Wu, J., Kamal, N., Hao, H., Qian, C., Liu, Z., Shao, Y., & Xu, B. (2019). Endophytic Bacillus megaterium BM18-2 mutated for cadmium accumulation and improving plant growth in Hybrid Pennisetum. Biotechnology reports, 24, e00374.

Xiao, X., Luo, S., Zeng, G., Wei, W., Wan, Y., Chen, L., & Xi, Q. (2010). Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresource technology, 101(6), 1668-1674.

Yang, Q., Tu, S., Wang, G., Liao, X., & Yan, X. (2012). Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. International journal of phytoremediation, 14(1), 89-99.

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145-156.

Zhu, L. J., Guan, D. X., Luo, J., Rathinasabapathi, B., & Ma, L. Q. (2014). Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere, 113, 9-16.

Published

2023-04-28

How to Cite

Priya, E. M. ., & K. S. Tamilselvi. (2023). Biotransformation of Heavy Metals by Plant Growth Promoting Endophytic Bacteria: An Assessment . Indonesian Journal of Social and Environmental Issues (IJSEI), 4(1), 36-44. https://doi.org/10.47540/ijsei.v4i1.741

Issue

Section

Articles