Hydrological Impacts of Climate Change (Rainfall and Temperature) and Characterization of Future Drought in the Aga Foua Djilas Watershed
DOI:
https://doi.org/10.47540/ijsei.v4i3.1218Keywords:
Climate Change, Drought, Hydrological Impacts, WatershedAbstract
Studying climate change's impact on runoff and drought is crucial for sustainable society and ecosystems. The extent of drought evolution and how droughts would affect society and the environment are not sufficiently considered in Senegal. This study assesses hydrological impacts and future drought using three global climate models (ACCESS-ESM1-5, BCC-CSM2-MR, and MRI-ESM2-0) as part of the Coupled Model Intercomparison Project (CMIP6) in the Aga-Foua-Djilas Basin. To this end, the hydrological impacts of climate change over 20-year periods (2021-2040; 2041-2060; 2061-2080; 2081-2100) at a resolution of 2.5 under four emission scenarios (SSP 126; 245; 370; 585), were investigated, and the drought characteristics are shown below, the SSP 245 and 585 scenarios over the 2021-2100 period. The results highlight a decrease in runoff potential given the drop in rainfall, which fell from 25.2 mm over the 2021-2040 period and under SSP 126 to 2.4 mm towards the end of the century (2081-2100) and under the SSP 585 scenario, changes in the standardized precipitation index (SPI) and the standardized precipitation and evapotranspiration index (SPEI) were first compared, and the SPEI showed larger changes due to its inclusion of temperature effects. The drought zone in the basin is likely to increase at the end of the 21st century with values approaching 80% for SPI and 90% for SPEI under the SSP 245 and SSP 585 scenarios if drought mitigation and adaptation mechanisms are inadequate. The results provide important guidance for improving the identification of causes, minimizing impacts, and building resilience to droughts in Senegal.
Downloads
References
Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation.
Ahmadalipour, A., Moradkhani, H., & Demirel, M. C. (2017). A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. Journal of Hydrology, 553, 785–797.
Alemayehu, A., & Bewket, W. (2017). Smallholder farmers’ coping and adaptation strategies to climate change and variability in the central highlands of Ethiopia. Local Environment, 22(7), 825–839.
Almazroui, M., Ashfaq, M., Islam, M. N., Rashid, I. U., Kamil, S., Abid, M. A., O’Brien, E., Ismail, M., Reboita, M. S., Sörensson, A. A., Arias, P. A., Alves, L. M., Tippett, M. K., Saeed, S., Haarsma, R., Doblas-Reyes, F. J., Saeed, F., Kucharski, F., Nadeem, I., … Sylla, M. B. (2021). Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Systems and Environment, 5(2), 155–183.
Ardoin-Bardin, S. (2004). Variabilité hydroclimatique et impacts sur les ressources en eau de grands bassins hydrographiques en zone soudano-sahélienne [PhD Thesis].
Ault, T. R., Mankin, J. S., Cook, B. I., & Smerdon, J. E. (2016). Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Science Advances, 2(10), e1600873.
Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023.
Butu, H. M., Seo, Y., & Huh, J. S. (2020). Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI. Sustainability, 12(3), 963.
Chen, J., Brissette, F. P., Lucas-Picher, P., & Caya, D. (2017). Impacts of weighting climate models for hydro-meteorological climate change studies. Journal of Hydrology, 549, 534–546.
Chen, J., Brissette, F. P., Poulin, A., & Leconte, R. (2011). Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resources Research, 47(12), 2011WR010602.
Diakhaté, M., Mbaye, M. L., Camara, I., & Barry, M. B. (2022). Projected Changes in the Rainfall Annual Cycle over the Senegal River Basin Using CMIP5 bias-Corrected Simulations. American Journal of Environmental Protection, 10(1), Article 1.
Díaz, L. B., Saurral, R. I., & Vera, C. S. (2021). Assessment of South America summer rainfall climatology and trends in a set of global climate models large ensembles. International Journal of Climatology, 41(S1).
FAO (Ed.). (2017). Building resilience for food and food security. FAO.
Feng, H., & Zhang, M. (2015). Global land moisture trends: Drier in dry and wetter in wet over land. Scientific Reports, 5(1), 18018.
Feng, S., Trnka, M., Hayes, M., & Zhang, Y. (2017). Why Do Different Drought Indices Show Distinct Future Drought Risk Outcomes in the U.S. Great Plains? Journal of Climate, 30(1), 265–278.
Frasson, R. P. D. M., Pavelsky, T. M., Fonstad, M. A., Durand, M. T., Allen, G. H., Schumann, G., Lion, C., Beighley, R. E., & Yang, X. (2019). Global Relationships Between River Width, Slope, Catchment Area, Meander Wavelength, Sinuosity, and Discharge. Geophysical Research Letters, 46(6), 3252–3262.
Fujimori, S., Hasegawa, T., Krey, V., Riahi, K., Bertram, C., Bodirsky, B. L., Bosetti, V., Callen, J., Després, J., Doelman, J., Drouet, L., Emmerling, J., Frank, S., Fricko, O., Havlik, P., Humpenöder, F., Koopman, J. F. L., Van Meijl, H., Ochi, Y., … Van Vuuren, D. (2019). A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2(5), 386–396.
Fung, K. F., Huang, Y. F., Koo, C. H., & Soh, Y. W. (2020). Drought forecasting: A review of modelling approaches 2007–2017. Journal of Water and Climate Change, 11(3), 771–799.
Girma, E., Tino, J., & Wayessa, G. (2016). Rainfall trend and variability analysis in Setema-Gatira area of Jimma, Southwestern Ethiopia. African Journal of Agricultural Research, 11(32), 3037–3045.
Granderson, A. A. (2014). Making sense of climate change risks and responses at the community level: A cultural-political lens, Climate Risk Management, 3, 55-64.
IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press.
IPCC (Ed.). (2014). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press.
Javanmard, S. (2017). Spatial–Temporal Analysis of Drought in Iran Using SPI During a Long—Term Period. Earth Sciences, 6(2), 15.
Kendall, M. G. (1975). Multivariate analysis. Griffin.
Konapala, G., Mishra, A. K., Wada, Y., & Mann, M. E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11(1), 3044.
Kouamé, A. N., Amani, M. K., Gnaboa, R., Traoré, K. S., & Houenou, P. V. (2014). Analyse De Phenomènes Hydrologiques Dans Un Bassin Versant Urbanisé: Cas De La Ville De Yamoussoukro (Centre De La Cote D’ivoire). LARHYSS Journal, 17, Article 17.
Kouassi, A. M., Assoko, A. V. S., Kouakou, K. E., Dje, K. B., Kouame, K. F., & Biemi, J. (2017). Analysis of the Hydrological Impacts of Climate Variability in West Africa: Case Study of the Bandama Watershed in Ivory Coast. LARHYSS Journal, 31, Article 31.
Kouassi, A. M., N’ Guessan, B., Kouame, K., Kouame, K., Okaingni, J., & Biemi, J. (n.d.). Application of the cross-simulation method to the analysis of trends in the rainfall-flow relationship from the GR2M model: Case of N’zi -Bandama watershed (Ivory Coast). 344, 288–296.
Laurent, L., Buoncristiani, J.-F., Pohl, B., Zekollari, H., Farinotti, D., Huss, M., Mugnier, J.-L., & Pergaud, J. (2020). The impact of climate change and glacier mass loss on the hydrology in the Mont-Blanc massif. Scientific Reports, 10(1), 10420.
Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 126, 23–34.
Leone, F., Meschinet De Richemond, N. & Vinet, F. (2010). Aléas naturels et gestion des risques. Paris, Presses Universitaires de France.
Lubes-Niel, H., Masson, J. M., Paturel, J. E., & Servat, É. (1998). Climatic variability and statistics. Study by simulation of the power and the robustness of some tests used to check the homogeneity of chronicles. 3, 383–408.
Mahe, G., Paturel, J.-E., Servat, E., Conway, D., & Dezetter, A. (2005). The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. Journal of Hydrology, 300(1–4), 33–43.
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245.
Mbaye, I., Sane, T., & Dieye, E. (2011, July 7). Climate change, perceptions and strategies of the populations of the city of ziguinchor in Senegal. Proceedings of the colloquium “Strengthening the resilience to climate change of cities: from spatial diagnosis to adaptation measures” (2R2CV), Paul Verlaine University - Metz, France.
Mbaye, M. L., Sylla, M. B., & Tall, M. (2019). Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa. Atmosphere, 10(11), 712.
Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347–350.
Nguvava, M., Abiodun, B. J., & Otieno, F. (2019a). Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228, 41–54.
Nguvava, M., Abiodun, B. J., & Otieno, F. (2019b). Projecting drought characteristics over East African basins at specific global warming levels. Atmospheric Research, 228, 41–54.
Ortega, G., Arias, P. A., Villegas, J. C., Marquet, P. A., & Nobre, P. (2021). Present‐day and future climate over central and South America according to CMIP5 / CMIP6 models. International Journal of Climatology, 41(15), 6713–6735.
Osima, S., Indasi, V. S., Zaroug, M., Endris, H. S., Gudoshava, M., Misiani, H. O., Nimusiima, A., Anyah, R. O., Otieno, G., Ogwang, B. A., Jain, S., Kondowe, A. L., Mwangi, E., Lennard, C., Nikulin, G., & Dosio, A. (2018). Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environmental Research Letters, 13(6), 065004.
Pettitt, A. N. (1979). A Non-Parametric Approach to the Change-Point Problem. Applied Statistics, 28(2), 126.
Phan, T. T. H., & Nguyen, H. A. (2023). Spatial and temporal distributions of temperature and rainfall on tropical islands of Vietnam. Journal of Water and Climate Change, 14(5), 1395–1412.
Saada, N., & Abu-Romman, A. (2017). Multi-site Modeling and Simulation of the Standardized Precipitation Index (SPI) in Jordan. Journal of Hydrology: Regional Studies, 14, 83–91.
Sadio, P. M., Mbaye, M. L., Diatta, S., & Sylla, M. B. (2020). Variabilité et changement hydroclimatiques dans le bassin-versant du fleuve Casamance (Sénégal). La Houille Blanche, 106(6), 89–96.
Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389.
Servat, E., Paturel, J.-E., Kouame, B., Travaglio, M., Ouedraogo, M., Boyer, O., Lubes-Niel, H., Fritsch, J.-M., Masson, J.-M., & Marieu, B. (n.d.). Identification, caractérisation et conséquences d’une variabilité hydrologique en Afrique de l’Ouest et centrale.
Shiferaw, A., Tadesse, T., Rowe, C., & Oglesby, R. (2018). Precipitation Extremes in Dynamically Downscaled Climate Scenarios over the Greater Horn of Africa. Atmosphere, 9(3), 112.
Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. J., Kurnaz, M. L., Li, D., … Dosio, A. (2020). Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 33(9), 3635–3661.
Sultan, B., & Janicot, S. (2006). Climate and agriculture in West Africa. 5, 50–51.
Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China Earth Sciences, 63(3), 459–462.
Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55.
Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C., & Diffenbaugh, N. S. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196–207.
Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718.
Vittecoq, B., Lachassagne, P., Lanini, S., & Maréchal, J. C. (2010). Évaluation des ressources en eau de la Martinique: Calcul spatialisé de la pluie efficace et validation à l’échelle du bassin versant. Revue Des Sciences de l’eau, 23(4), 361–373.
Wada, Y., Van Beek, L. P. H., Wanders, N., & Bierkens, M. F. P. (2013). Human water consumption intensifies hydrological drought worldwide. Environmental Research Letters, 8(3), 034036.
Xu, Y., Gao, X., & Giorgi, F. (2010). Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Research, 41, 61–81.
Yang, T., Ding, J., Liu, D., Wang, X., & Wang, T. (2019). Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. Journal of Climate, 32(3), 737–748.
Zeybekoğlu, U., & Aktürk, G. (2021). A comparison of the China-Z Index (CZI) and the Standardized Precipitation Index (SPI) for drought assessment in the Hirfanli Dam basin in central Turkey. Arabian Journal of Geosciences, 14(24), 2731.
Zhao, Y. (2015). Investigation of uncertainties in assessing climate change impacts on the hydrology of a Canadian river watershed [Phd, École de technologie supérieure].
Published
How to Cite
Issue
Section
Copyright (c) 2023 Philippe Malick Dione, Cheikh Faye, Cheikh Abdoul Aziz Sy Sadio

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.